首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study, which is the first of its kind, uses information derived from simultaneously measured wave spectra and particle distributions as the input to a theoretical linear instability model of an electrostatic cyclotron harmonic wave event recorded on GEOS-1. The presence of a hot loss cone component of the particle distribution is established experimentally, and the model accounts reasonably for the observed frequencies and relative strengths of the (n+1/2)f c and upper hybrid emission features.  相似文献   

2.
We study instabilities driven by a sheared plasma flow in the low-frequency domain. Two unstable branches are found: the ion-sound mode and the kinetic Alfvén mode. Both instabilities are aperiodic. The ion-sound instability does not depend on the plasma β (gas/magnetic pressure ratio) and has a maximum growth rate of about 0.1 of the velocity gradient dV 0/dx. On the other hand, the kinetic Alfvén instability is stronger for larger β and dominates the ion-sound instability for β > 0.05. Possible applications for space plasmas are shortly discussed.  相似文献   

3.
We discuss the recent progress in studying the absolute and convective instabilities of circularly polarized Alfvén waves (pump waves) propagating along an ambient magnetic field in the approximation of ideal magnetohydrodynamics (MHD). We present analytical results obtained for pump waves with small dimensionless amplitude a, and compare them with numerical results valid for arbitrary a. The type of instability, absolute or convective, depends on the velocity U of the reference frame where the pump wave is observed with respect to the rest plasma. One of the main results of our analysis is that the instability is absolute when U l < U < U r and convective otherwise. We study the dependences of U l and U r on a and the ratio of the sound speed to the Alfvén speed b. We also present the results of calculation of the increment of the absolute instability on U for different values of a and b. When the instability is convective (U < U l or U > U r) we consider the signalling problem, and show that spatially amplifying waves exist only when the signalling frequency is in two symmetric frequency bands. Then, we write down the analytical expressions determining the boundaries of these frequency bands and discuss how they agree with numerically calculated values. We also present the dependences of the maximum spatial amplification rate on U calculated both analytically and numerically. The implication of the obtained results on the interpretation of observational data from space missions is discussed. In particular, it is shown that circularly polarized Alfvén waves propagating in the solar wind are convectively unstable in a reference frame of any realistic spacecraft.  相似文献   

4.
Yan  Yihua  Huang  Guangli 《Space Science Reviews》2003,107(1-2):111-118
The Bastille-day event in 2000 produced energetic 3B/X5.6 flare with a halo CME, which had great geo-effects consequently. This event has been studied extensively and it is considered that it follows the two-ribbon flare model. The flare/CME event was triggered by an erupting filament and TRACE observations showed formation of giant arcade structures during the flare process. Hard X-ray (HXR) two ribbons revealed for the first time in this flare event (Masuda et al., 2001). The reconstruction of 3-D coronal magnetic fields revealed a magnetic flux rope structure, for the first time, from extrapolation of observed photospheric vector magnetogram data and the flux rope structure was co-spatial with portion of the filament and a UV bright lane (Yan et al., 2001a, 2001b). Here we review some recent work related to the flux rope structure and the HXR two ribbons by comparing their locations and the flux temporal profiles during the flare process so as to understand the energy release and particle accelerations. It is proposed that the rope instability may have triggered the flare event, and reconnection may occur during this process. The drifting pulsation structure in the decimetric frequency range is considered to manifest the rope ejection, or the initial phase of the coronal mass ejection. The HXR two ribbons were distributed along the flux rope and the rope foot points coincide with HXR sources. The energy dissipation from IPS observations occurred within about 100 R is consistent with the estimate for the flux rope system. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
Magnetic reconnection provides an efficient conversion of the so-called free magnetic energy to kinetic and thermal energies of cosmic plasmas, hard electromagnetic radiation, and accelerated particles. This phenomenon was found in laboratory and space, but it is especially well studied in the solar atmosphere where it manifests itself as flares and flare-like events. We review the works devoted to the tearing instability — the inalienable part of the reconnection process — in current sheets which have, inside of them, a transverse (perpendicular to the sheet plain) component of the magnetic field and a longitudinal (parallel to the electric current) component of the field. Such non-neutral current sheets are well known as the energy sources for flare-like processes in the solar corona. In particular, quasi-steady high-temperature turbulent current sheets are the energy sources during the main or hot phase of solar flares. These sheets are stabilized with respect to the collisionless tearing instability by a small transverse component of magnetic fiel, normally existing in the reconnecting and reconnected magnetic fluxes. The collision tearing mode plays, however, an important and perhaps dominant role for non-neutral current sheets in solar flares. In the MHD approximation, the theory shows that the tearing instability can be completely stabilized by the transverse fieldB n if its value satisfies the conditionB n /BS –3/4 B is the reconnecting component of the magnetic field just near the current sheet,S is the magnetic Reynolds number for the sheet. In this case, stable current sheets become sources of temporal spatial oscillations and usual MHD waves. The application of the theory to the solar atmosphere shows that the effect of the transverse field explains high stability of high-temperature turbulent current sheets in the solar corona. The stable current sheets can be sources of radiation in the radio band. If the sheet is destabilized (atB n /BS –3/4) the compressibility of plasma leads to the arizing of the tearing instability in a long wave region, in which for an incompressible plasma the instability is absent. When a longitudinal magnetic field exists in the current sheet, the compressibility-induces instability can be dumped by the longitudinal field. These effects are significant in destabilization of reconnecting current sheets in solar flares: in particular, the instability with respect to disturbances comparable with the width of the sheet is determined by the effect of compressibility.  相似文献   

6.
7.
8.
研究高超声速平板边界层考虑真实气体效应的流动稳定性问题.采用7组元化学反应平衡模型,黏度和导热系数采用混合律,同时考虑组元浓度扩散引起的能量传递,在马赫数为10~20、壁面温度为500~3500K、飞行高度为20~30.5km等条件下,对平板边界层流动的稳定性进行了分析,给出了扰动演化相对增长的N值.计算结果表明:高马赫数飞行中不稳定扰动的第3模态将与第2模态合并,共同影响转捩;高温真实气体的流动稳定性特征,随着马赫数、壁面温度、飞行高度变化的基本趋势与完全气体的基本一致;与完全气体相比,真实气体的相对增长N值包络线较小,表明高温真实气体将抑制转捩发生.   相似文献   

9.
二维喷管的初始流动   总被引:1,自引:1,他引:0  
基于可压缩Navier-Stokes方程,采用大涡模拟方法与高精度混合WENO/TCD格式,对Ma=1.4的超声速平面射流初始流场进行了数值研究.数值结果清晰地描述了超声速平面射流初始流场的结构特征,包括主涡环与激波结构以及它们演变过程.因主涡环内存在涡导激波对,激波与涡相互作用加速射流剪切层失稳,使剪切层首次卷起形成小涡的位置出现在涡导激波对后,此与亚声速射流情况不同.小涡串卷起成后,相继与涡导激波对相互作用,使激波出现明显的变形并加速主涡环失稳.   相似文献   

10.
The two-stream instability as a fundamental process in a current-carrying plasma is reconsidered. Its well-established linear version, based on kinetic Landau theory, predicts a threshold for the drift velocity between both species below which the plasma should be stable. We report on simulations which, however, show that a plasma as a non-linearly responding medium can be destabilized well below this threshold. Responsible for this unexpected behaviour are coherent, electrostatic, trapped particle structures such as phase space vortices or holes which can grow non-linearly out of thermal noise receiving their energy from the net imbalance of loss of electron kinetic energy and gain of ion kinetic energy. The birth of predominantly zero-energy holes is shown numerically being associated with initial, non-topological fluctuations. The latter are not subject to Landau damping, as they lie outside the realm of linear wave theory. For a pair plasma a typical scenario is presented, which encompasses several regimes such as non-linear growth of multiple holes, saturation and fully developed structural turbulence as well as an asymptotic approach to a new collisionless equilibrium. During the transient, structural state the plasma transport appears to be highly anomalous.  相似文献   

11.
Ion demagnetization in the plasma sheet causes the formation of field-aligned current that can trigger a magnetosphere-ionosphere coupling feedback instability, which may play an important role in substorm and auroral arc generation. Since field-aligned currents close ionospheric currents, their magnitude is controlled by ionospheric conductivity. The cause of instability is the impact of increasing upward field-aligned currents on ionospheric conductivity, which in turn stimulates an increase in the field-aligned currents. When the magnitude of these currents becomes sufficiently large for the acceleration of precipitating electrons, a feedback mechanism becomes possible. Upward field-aligned currents increase the ionospheric conductivity that stimulates an explosion-like increase in field-aligned currents. It is believed that this instability may be related to substorm generation. Demagnetization of hot ions in the plasma sheet leads to the motion of magnetospheric electrons through a spatial gradient of ion population. Field-aligned currents, because of their effect on particle acceleration and the magnitude of ionospheric conductivity, can also lead to another type of instability associated with the breaking of the earthward convection flow into convection streams. The growth rate of this instability is maximum for structures with sizes less than the ion Larmor radius in the equatorial plane. This may lead to the formation of auroral arcs with widths of the order of 10 km. This instability is able to explain many features of auroral arcs, including their conjugacy in opposite hemispheres. However, it cannot explain very narrow (less than 1 km) arcs.  相似文献   

12.
采用一种结构化矩形直机翼涡发生器产生一对大小不同、方向相反的翼尖涡,调节双涡涡量的大小比例Г1/Г2及其间距b,触发两涡Rayleigh—Ludwieg不稳定性。实验采用流动显示方法定性观察双涡相互作用过程,通过二维PIV(粒子成像测速)系统定量研究双涡相互作用特征,得到双翼尖涡中主涡及次涡的运动特性、环量-时间特性。对不同实验参数下残余环量比例进行分析,发现双涡涡量大小比例Г1/Г2在1.3~1.4、b为50ram时双涡相交削弱效果良好,能够实现翼尖涡强序削弱程度扶30%~40%。  相似文献   

13.
Modern cosmological observations allow us to study in great detail the evolution and history of the large scale structure hierarchy. The fundamental problem of accurate constraints on the cosmological parameters, within a given cosmological model, requires precise modelling of the observed structure. In this paper we briefly review the current most effective techniques of large scale structure simulations, emphasising both their advantages and shortcomings. Starting with basics of the direct N-body simulations appropriate to modelling cold dark matter evolution, we then discuss the direct-sum technique GRAPE, particle-mesh (PM) and hybrid methods, combining the PM and the tree algorithms. Simulations of baryonic matter in the Universe often use hydrodynamic codes based on both particle methods that discretise mass, and grid-based methods. We briefly describe Eulerian grid methods, and also some variants of Lagrangian smoothed particle hydrodynamics (SPH) methods.  相似文献   

14.
This article investigates the near-field dynamics in a particle-laden round turbulent jet in a large-eddy simulation (LES). A point-force two-way coupling model is adopted in the simulation to reveal the particle modulation of turbulence. The particles mainly excite the initial instability of the jet and bring about the earlier breakup of vortex rings in the near-field. The flow fluctuating intensity either in the axial or in the radial directions is hence increased by particles. The article also describes the mean velocity modulated by particles. The changing statistical velocity induced by particle modulation implies the effects of modulation of the local flow structures. This study is expected to be useful to the control of two-phase turbulent jets.  相似文献   

15.
The ion tearing mode is considered as the only mechanism capable of initiating reconnection processes in the equilibrium plasma sheet whose scale considerably exceeds the ion Larmor radius. The paper gives a brief review of linear theory of the tearing mode instability that allows the onset of its development to be determined. It is shown that the explosive growth of the tearing mode in a nonlinear stage is consistent with the dynamics of charged particle acceleration and the behaviour of the magnetic field variations and plasma flow in the magnetotail. The tail structure formed, as a result of the development of the tearing mode, is also discussed.Proceedings of the Symposium on Solar Terrestrial Physics held in Innsbruck, May–June 1978.  相似文献   

16.
The Hot Plasma Experiment, F3H, on boardFreja is designed to measure auroral particle distribution functions with very high temporal and spatial resolution. The experiment consists of three different units; an electron spectrometer that measures angular and energy distributions simultaneously, a positive ion spectrometer that is using the spacecraft spin for three-dimensional measurements, and a data processing unit. The main scientific objective is to study positive ion heating perpendicular to the magnetic field lines in the auroral region. The high resolution measurements of different positive ion species and electrons have already provided important information on this process as well as on other processes at high latitudes. This includes for example high resolution observations of auroral particle precipitation features and source regions of positive ions during magnetic disturbances. TheFreja orbit with an inclination of 63° allows us to make detailed measurements in the nightside auroral oval during all disturbance levels. In the dayside, the cusp region is covered during magnetic disturbances. We will here present the instrument in some detail and some outstanding features in the particle data obtained during the first months of operation at altitudes around 1700 km in the northern hemisphere auroral region.  相似文献   

17.
We review the physical processes of particle acceleration, injection, propagation, trapping, and energy loss in solar flare conditions. An understanding of these basic physical processes is inexorable to interpret the detailed timing and spectral evolution of the radiative signatures caused by nonthermal particles in hard X-rays, gamma-rays, and radio wavelengths. In contrast to other more theoretically oriented reviews on particle acceleration processes, we aim here to capitalize on the numerous observations from recent spacecraft missions, such as from the Compton Gamma Ray Observatory (CGRO), the Yohkoh Hard X-Ray Telescope (HXT) and Soft X-Ray Telescope (SXT), and the Transition Region and Coronal Explorer (TRACE). High-precision energy-dependent time delay measurements from CGRO and spatial imaging with Yohkoh and TRACE provide invaluable observational constraints on the topology of the acceleration region, the reconstruction of magnetic reconnection processes, the resulting electromagnetic fields, and the kinematics of energized (nonthermal) particles. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
燃烧不稳定问题是今后相当长一段时间内固体火箭发动机燃烧流动领域需要解决的重要问题。由燃烧响应主导的燃烧不稳定问题具有很典型的非线性燃烧不稳定特征,是当前研究的重点与难点。采用非线性方法开展固体火箭发动机的非线性动力学分析,可以获得非线性燃烧不稳定的触发条件与稳定性区间,以及不稳定的增长过程和最终达到的极限环振荡状态。压强耦合响应、速度耦合响应、分布式燃烧、粒子阻尼和喷管阻尼是燃烧不稳定分析中重要的增益和阻尼项,在非线性燃烧不稳定分析中,这些增益与阻尼同样需要非线性表达式,需要开展精细的实验研究和理论分析,以获得更符合发动机实际工作状况的推进剂燃烧响应和铝分布式燃烧的非线性模型。深刻认识压强振荡增长过程中各阶模态间能量的传递规律,是揭示非线性不稳定触发机理和极限环形成过程的关键所在。在实验验证技术方面,需要建立起地面实验外部激励和飞试状态实际激励环境的等效分析方法,发展能够有效模拟实际飞行时发动机燃烧不稳定环境的地面等效模拟实验方法。  相似文献   

19.
20.
We review work on diffusion coefficients of energetic particles with an attempt to extract implications on their behaviour at high latitudes. In the ecliptic plane results from solar energetic particle propagation between the Sun and about 5 AU can be described by an effective radial mean free path r which is approximately constant as a function of distancer. When particle propagation in three dimensions in the heliosphere is considered it is not sufficient to consider r only. Jovian electrons can be used as probes to determine the parameters of three-dimensional diffusion. In the polar regions diffusion is dominated by its parallel component. Some predictions how should vary with latitude are discussed. For different choices of this variation we present expectations for intensity-time profiles of solar particle events during the Ulysses polar passages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号