首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Curiosity’s Mars Hand Lens Imager (MAHLI) Investigation   总被引:1,自引:0,他引:1  
The Mars Science Laboratory (MSL) Mars Hand Lens Imager (MAHLI) investigation will use a 2-megapixel color camera with a focusable macro lens aboard the rover, Curiosity, to investigate the stratigraphy and grain-scale texture, structure, mineralogy, and morphology of geologic materials in northwestern Gale crater. Of particular interest is the stratigraphic record of a ~5?km thick layered rock sequence exposed on the slopes of Aeolis Mons (also known as Mount Sharp). The instrument consists of three parts, a?camera head mounted on the turret at the end of a robotic arm, an electronics and data storage assembly located inside the rover body, and a calibration target mounted on the robotic arm shoulder azimuth actuator housing. MAHLI can acquire in-focus images at working distances from ~2.1?cm to infinity. At the minimum working distance, image pixel scale is ~14?μm per pixel and very coarse silt grains can be resolved. At the working distance of the Mars Exploration Rover Microscopic Imager cameras aboard Spirit and Opportunity, MAHLI’s resolution is comparable at ~30?μm per pixel. Onboard capabilities include autofocus, auto-exposure, sub-framing, video imaging, Bayer pattern color interpolation, lossy and lossless compression, focus merging of up to 8 focus stack images, white light and longwave ultraviolet (365 nm) illumination of nearby subjects, and 8 gigabytes of non-volatile memory data storage.  相似文献   

2.
《中国航空学报》2021,34(2):240-251
This paper proposes a new three-dimensional optimal guidance law for impact time control with seeker’s Field-of-View (FOV) constraint to intercept a stationary target. The proposed guidance law is devised in conjunction with the concept of biased Proportional Navigation Guidance (PNG). The guidance law developed leverages a nonlinear function to ensure the boundedness of velocity lead angle to cater to the seeker’s FOV limit. It is proven that the impact time error is nullified in a finite-time under the proposed method. Additionally, the optimality of the biased command is theoretically analyzed. Numerical simulations confirm the superiority of the proposed method and validate the analytic findings.  相似文献   

3.
Simulation-based training is a promising way to train a carrier flight deck crew because of the complex and dangerous working environment. Quantitative evaluation of simulation-based training quality is vital to make simulation-based training practical for aircraft carrier marshalling.This paper develops a personal computer-based aircraft carrier marshalling simulation system and a cave automatic virtual environment(CAVE)-based immersive environment. In order to compare the training effectiveness of simulation-based training and paper-based training, a learning cubic model is proposed and a contrast experiment is carried out as well. The experimental data is analyzed based on a simplified Kirkpatrick’s model. The results show that simulation-based training is better than paper-based training by 26.80% after three rounds of testing, which prove the effectiveness of simulation-based aircraft carrier marshalling training.  相似文献   

4.
5.
Titan’s stratospheric ice clouds are by far the most complex of any observed in the solar system, with over a dozen organic vapors condensing out to form a suite of pure and co-condensed ices, typically observed at high winter polar latitudes. Once these stratospheric ices are formed, they will diffuse throughout Titan’s lower atmosphere and most will eventually precipitate to the surface, where they are expected to contribute to Titan’s regolith.Early and important contributions were first made by the InfraRed Interferometer Spectrometer (IRIS) on Voyager 1, followed by notable contributions from IRIS’ successor, the Cassini Composite InfraRed Spectrometer (CIRS), and to a lesser extent, from Cassini’s Visible and Infrared Mapping Spectrometer (VIMS) and the Imaging Science Subsystem (ISS) instruments. All three remote sensing instruments made new ice cloud discoveries, combined with monitoring the seasonal behaviors and time evolution throughout Cassini’s 13-year mission tenure.A significant advance by CIRS was the realization that co-condensing chemical compounds can account for many of the CIRS-observed stratospheric ice cloud spectral features, especially for some that were previously puzzling, even though some of the observed spectral features are still not well understood. Relevant laboratory transmission spectroscopy efforts began just after the Voyager encounters, and have accelerated in the last few years due to new experimental efforts aimed at simulating co-condensed ices in Titan’s stratosphere. This review details the current state of knowledge regarding the organic ice clouds in Titan’s stratosphere, with perspectives from both observational and experimental standpoints.  相似文献   

6.
Junocam is a wide-angle camera designed to capture the unique polar perspective of Jupiter offered by Juno’s polar orbit. Junocam’s four-color images include the best spatial resolution ever acquired of Jupiter’s cloudtops. Junocam will look for convective clouds and lightning in thunderstorms and derive the heights of the clouds. Junocam will support Juno’s radiometer experiment by identifying any unusual atmospheric conditions such as hotspots. Junocam is on the spacecraft explicitly to reach out to the public and share the excitement of space exploration. The public is an essential part of our virtual team: amateur astronomers will supply ground-based images for use in planning, the public will weigh in on which images to acquire, and the amateur image processing community will help process the data.  相似文献   

7.
8.
The Earth’s bow shock is the most studied example of a collisionless shock in the solar system. It is also widely used to model or predict the behaviour at other astrophysical shock systems. Spacecraft observations, theoretical modelling and numerical simulations have led to a detailed understanding of the bow shock structure, the spatial organization of the components making up the shock interaction system, as well as fundamental shock processes such as particle heating and acceleration. In this paper we review the observations of accelerated ions at and upstream of the terrestrial bow shock and discuss the models and theories used to explain them. We describe the global morphology of the quasi-perpendicular and quasi-parallel shock regions and the foreshock. The acceleration processes for field-aligned beams and diffuse ion distribution types are discussed with connection to foreshock morphology and shock structure. The different possible mechanisms for extracting solar wind ions into the acceleration processes are also described. Despite several decades of study, there still remain some unsolved problems concerning ion acceleration at the bow shock, and we summarize these challenges.  相似文献   

9.
The Magnetic Field of the Earth’s Lithosphere   总被引:2,自引:0,他引:2  
The lithospheric contribution to the Earth’s magnetic field is concealed in magnetic field data that have now been measured over several decades from ground to satellite altitudes. The lithospheric field results from the superposition of induced and remanent magnetisations. It therefore brings an essential constraint on the magnetic properties of rocks of the Earth’s sub-surface that would otherwise be difficult to characterize. Measuring, extracting, interpreting and even defining the magnetic field of the Earth’s lithosphere is however challenging. In this paper, we review the difficulties encountered. We briefly summarize the various contributions to the Earth’s magnetic field that hamper the correct identification of the lithospheric component. Such difficulties could be partially alleviated with the joint analysis of multi-level magnetic field observations, even though one cannot avoid making compromises in building models and maps of the magnetic field of the Earth’s lithosphere at various altitudes. Keeping in mind these compromises is crucial when lithospheric field models are interpreted and correlated with other geophysical information. We illustrate this discussion with recent advances and results that were exploited to infer statistical properties of the Earth’s lithosphere. The lessons learned in measuring and processing Earth’s magnetic field data may prove fruitful in planetary exploration, where magnetism is one of the few remotely accessible internal properties.  相似文献   

10.
In this review, an overview of the recent history of stochastic differential equations (SDEs) in application to particle transport problems in space physics and astrophysics is given. The aim is to present a helpful working guide to the literature and at the same time introduce key principles of the SDE approach via “toy models”. Using these examples, we hope to provide an easy way for newcomers to the field to use such methods in their own research. Aspects covered are the solar modulation of cosmic rays, diffusive shock acceleration, galactic cosmic ray propagation and solar energetic particle transport. We believe that the SDE method, due to its simplicity and computational efficiency on modern computer architectures, will be of significant relevance in energetic particle studies in the years to come.  相似文献   

11.
The ultraviolet spectrograph instrument on the Juno mission (Juno-UVS) is a long-slit imaging spectrograph designed to observe and characterize Jupiter’s far-ultraviolet (FUV) auroral emissions. These observations will be coordinated and correlated with those from Juno’s other remote sensing instruments and used to place in situ measurements made by Juno’s particles and fields instruments into a global context, relating the local data with events occurring in more distant regions of Jupiter’s magnetosphere. Juno-UVS is based on a series of imaging FUV spectrographs currently in flight—the two Alice instruments on the Rosetta and New Horizons missions, and the Lyman Alpha Mapping Project on the Lunar Reconnaissance Orbiter mission. However, Juno-UVS has several important modifications, including (1) a scan mirror (for targeting specific auroral features), (2) extensive shielding (for mitigation of electronics and data quality degradation by energetic particles), and (3) a cross delay line microchannel plate detector (for both faster photon counting and improved spatial resolution). This paper describes the science objectives, design, and initial performance of the Juno-UVS.  相似文献   

12.
13.
This article discusses one of the main strategies which China has implemented to develop its competency in the aviation field. It is strategic for China to boost its aviation industry via international cooperation and several models of involvement into the global aviation value chain with leading aviation industries. As it is depicted as a strategy here, it is not necessary to say that a formal strong national strategy in encouraging exists. Actually, it is clearly a way China’s aero industry takes to develop its competency and business at the context it encounters. From an observer’s perspective, it is indeed a critical strategy. This article describes this strategy via the context, policies, program cases, as well as the evolution of the cooperation models in order to synthesize the strategy.  相似文献   

14.
High-precision RCS measurement of aircraft’s weak scattering source   总被引:1,自引:0,他引:1  
《中国航空学报》2016,(3):772-778
The radar cross section(RCS) of weak scattering source on the surface of an aircraft is usually less than 40 d Bsm.How to accurately measure the RCS characteristics of weak scattering source is a technical challenge for the aircraft's RCS measurement.This paper proposes separating and extracting the two-dimensional(2D) reflectivity distribution of the weak scattering source with the microwave imaging algorithm and spectral transform so as to enhance its measurement precision.Firstly,we performed the 2D microwave imaging of the target and then used the 2D gating function to separate and extract the reflectivity distribution of the weak scattering source.Secondly,we carried out the spectral transform of the reflectivity distribution and eventually obtained the RCS of the weak scattering source through calibration.The prototype experimental results and their analysis show that the measurement method is effective.The experiments on an aircraft's low-scattering conformal antenna verify that the measurement method can eliminate the clutter on the surface of aircraft.The precision of measuring a 40 d Bsm target is 3–5 d B better than the existing RCS measurement methods.The measurement method can more accurately obtain the weak scattering source's RCS characteristics.  相似文献   

15.
NASA’s InSight lander will deploy a tripod-mounted seismometer package onto the surface of Mars in late 2018. Mars is expected to have lower seismic activity than the Earth, so minimisation of environmental seismic noise will be critical for maximising observations of seismicity and scientific return from the mission. Therefore, the seismometers will be protected by a Wind and Thermal Shield (WTS), also mounted on a tripod. Nevertheless, wind impinging on the WTS will cause vibration noise, which will be transmitted to the seismometers through the regolith (soil). Here we use a 1:1-scale model of the seismometer and WTS, combined with field testing at two analogue sites in Iceland, to determine the transfer coefficient between the two tripods and quantify the proportion of WTS vibration noise transmitted through the regolith to the seismometers. The analogue sites had median grain sizes in the range 0.3–1.0 mm, surface densities of \(1.3\mbox{--}1.8~\mbox{g}\,\mbox{cm}^{-3}\), and an effective regolith Young’s modulus of \(2.5^{+1.9}_{-1.4}~\mbox{MPa}\). At a seismic frequency of 5 Hz the measured transfer coefficients had values of 0.02–0.04 for the vertical component and 0.01–0.02 for the horizontal component. These values are 3–6 times lower than predicted by elastic theory and imply that at short periods the regolith displays significant anelastic behaviour. This will result in reduced short-period wind noise and increased signal-to-noise. We predict the noise induced by turbulent aerodynamic lift on the WTS at 5 Hz to be \(\sim2\times10^{-10}~\mbox{ms}^{-2}\,\mbox{Hz}^{-1/2}\) with a factor of 10 uncertainty. This is at least an order of magnitude lower than the InSight short-period seismometer noise floor of \(10^{-8}~\mbox{ms}^{-2}\,\mbox{Hz}^{-1/2}\).  相似文献   

16.
Space Science Reviews - The concentration and distribution of water in the Earth has influenced its evolution throughout its history. Even at the trace levels contained in the planet’s deep...  相似文献   

17.
Despite the numerous modeling efforts of the past, our knowledge on the radiation-induced physical and chemical processes in Europa’s tenuous atmosphere and on the exchange of material between the moon’s surface and Jupiter’s magnetosphere remains limited. In lack of an adequate number of in situ observations, the existence of a wide variety of models based on different scenarios and considerations has resulted in a fragmentary understanding of the interactions of the magnetospheric ion population with both the moon’s icy surface and neutral gas envelope. Models show large discrepancy in the source and loss rates of the different constituents as well as in the determination of the spatial distribution of the atmosphere and its variation with time. The existence of several models based on very different approaches highlights the need of a detailed comparison among them with the final goal of developing a unified model of Europa’s tenuous atmosphere. The availability to the science community of such a model could be of particular interest in view of the planning of the future mission observations (e.g., ESA’s JUpiter ICy moons Explorer (JUICE) mission, and NASA’s Europa Clipper mission). We review the existing models of Europa’s tenuous atmosphere and discuss each of their derived characteristics of the neutral environment. We also discuss discrepancies among different models and the assumptions of the plasma environment in the vicinity of Europa. A summary of the existing observations of both the neutral and the plasma environments at Europa is also presented. The characteristics of a global unified model of the tenuous atmosphere are, then, discussed. Finally, we identify needed future experimental work in laboratories and propose some suitable observation strategies for upcoming missions.  相似文献   

18.
An extrapolation approach for aeroengine’s transient control law design   总被引:2,自引:0,他引:2  
Transient control law ensures that the aeroengine transits to the command operating state rapidly and reliably. Most of the existing approaches for transient control law design have complicated principle and arithmetic. As a result, those approaches are not convenient for application. This paper proposes an extrapolation approach based on the set-point parameters to construct the transient control law, which has a good practicability. In this approach, the transient main fuel control law for acceleration and deceleration process is designed based on the main fuel flow on steady operating state. In order to analyze the designing feature of the extrapolation approach, the simulation results of several different transient control laws designed by the same approach are compared together. The analysis indicates that the aeroengine has a good performance in the transient process and the designing feature of the extrapolation approach conforms to the elements of the turbofan aeroengine.  相似文献   

19.
Acceleration of Particles to High Energies in Earth’s Radiation Belts   总被引:1,自引:0,他引:1  
Discovered in 1958, Earth’s radiation belts persist in being mysterious and unpredictable. This highly dynamic region of near-Earth space provides an important natural laboratory for studying the physics of particle acceleration. Despite the proximity of the radiation belts to Earth, many questions remain about the mechanisms responsible for rapidly energizing particles to relativistic energies there. The importance of understanding the radiation belts continues to grow as society becomes increasingly dependent on spacecraft for navigation, weather forecasting, and more. We review the historical underpinning and observational basis for our current understanding of particle acceleration in the radiation belts.  相似文献   

20.
I outline, from a theoretical and somewhat personal perspective, significant features of Pulsar Wind Nebulae (PWNe) as Cosmic Accelerators. I pay special attention to the recently discovered gamma ray “flares” in the Crab Nebula’s emission, focusing on the possibility, raised by the observations, that the accelerating electric field exceeds the magnetic field, suggesting that reconnection in the persistent current layer (a “current sheet”) plays a significant role in the behavior of this well studied Pevatron. I address the present status of the termination shock model for the particle accelerator that converts the wind flow energy to the observed non-thermal particle spectra, concluding that it has a number of major difficulties related to the transverse magnetic geometry of the shock wave. I discuss recent work on the inferred pair outflow rates, which are in excess of those predicted by existing theories of pair creation, and use those results to point out that the consequent mass loading of the wind reduces the wind’s bulk flow 4-velocity to the point that dissipation of the magnetic field in a pulsar’s wind upstream of the termination shock is restored to life as a viable model for the solution of the “σ” problem. I discuss some suggestions that current starvation in the current flow supporting the structured (“striped”) upstream magnetic field perhaps induces a transition to superluminal wave propagation. I?show that current starvation probably does not occur, because those currents are carried in the current sheet separating the stripes rather than in the stripes themselves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号