共查询到20条相似文献,搜索用时 15 毫秒
1.
Peslier Anne H. Schönbächler Maria Busemann Henner Karato Shun-Ichiro 《Space Science Reviews》2017,212(1-2):743-810
Space Science Reviews - The concentration and distribution of water in the Earth has influenced its evolution throughout its history. Even at the trace levels contained in the planet’s deep... 相似文献
2.
Johan De Keyser Donald L. Carpenter Fabien Darrouzet Dennis L. Gallagher Jiannan Tu 《Space Science Reviews》2009,145(1-2):7-53
Ground-based instruments and a number of space missions have contributed to our knowledge of the plasmasphere since its discovery half a century ago, but it is fair to say that many questions have remained unanswered. Recently, NASA’s Image and ESA’s Cluster probes have introduced new observational concepts, thereby providing a non-local view of the plasmasphere. Image carried an extreme ultraviolet imager producing global pictures of the plasmasphere. Its instrumentation also included a radio sounder for remotely sensing the spacecraft environment. The Cluster mission provides observations at four nearby points as the four-spacecraft configuration crosses the outer plasmasphere on every perigee pass, thereby giving an idea of field and plasma gradients and of electric current density. This paper starts with a historical overview of classical single-spacecraft data interpretation, discusses the non-local nature of the Image and Cluster measurements, and emphasizes the importance of the new data interpretation tools that have been developed to extract non-local information from these observations. The paper reviews these innovative techniques and highlights some of them to give an idea of the flavor of these methods. In doing so, it is shown how the non-local perspective opens new avenues for plasmaspheric research. 相似文献
3.
4.
5.
6.
Marchi S. Asphaug E. Bell J. F. Bottke W. F. Jaumann R. Park R. S. Polanskey C. A. Prettyman T. H. Williams D. A. Binzel R. Oran R. Weiss B. Russell C. T. 《Space Science Reviews》2022,218(4):1-28
Space Science Reviews - Analysis of Homestake, Gallex and GNO measurements reveals evidence of variability of presumed solar-neutrino-flux measurements. Analysis of Super-Kamiokande neutrino... 相似文献
7.
Discovered in 1958, Earth’s radiation belts persist in being mysterious and unpredictable. This highly dynamic region of near-Earth space provides an important natural laboratory for studying the physics of particle acceleration. Despite the proximity of the radiation belts to Earth, many questions remain about the mechanisms responsible for rapidly energizing particles to relativistic energies there. The importance of understanding the radiation belts continues to grow as society becomes increasingly dependent on spacecraft for navigation, weather forecasting, and more. We review the historical underpinning and observational basis for our current understanding of particle acceleration in the radiation belts. 相似文献
8.
Andreas Keiling 《Space Science Reviews》2009,142(1-4):73-156
The Earth’s magnetotail is an extremely complex system which—energized by the solar wind—displays many phenomena, and Alfvén waves are essential to its dynamics. While Alfvén waves were first predicted in the early 1940’s and ample observations were later made with rockets and low-altitude satellites, observational evidence of Alfvén waves in different regions of the extended magnetotail has been sparse until the beginning of the new millennium. Here I provide a phenomenological overview of Alfvén waves in the magnetotail organized by region—plasmasphere, central plasma sheet, plasma sheet boundary layer, tail lobes, and reconnection region—with an emphasis on spacecraft observations reported in the new millennium that have advanced our understanding concerning the roles of Alfvén waves in the dynamics of the magnetotail. A brief discussion of the coupling of magnetotail Alfvén waves and the low-altitude auroral zone is also included. 相似文献
9.
Lightning Related Transient Luminous Events at High Altitude in the Earth’s Atmosphere: Phenomenology, Mechanisms and Effects 总被引:2,自引:0,他引:2
This paper presents a literature survey on the recent developments related to experimental and modeling studies of transient luminous events (TLEs) in the middle atmosphere termed elves, sprites and jets that are produced in association with thunderstorm activity at tropospheric altitudes. The primary emphasis is placed on publications that appeared in refereed literature starting from year 2008 and up to the present date. The survey covers general phenomenology of TLEs and their relationships to characteristics of individual thunderstorms and lightning, physical mechanisms and modeling of TLEs, past, present and future orbital observations of TLEs, and their chemical, energetic and electric effects on local and global scales. 相似文献
10.
11.
12.
The Earth’s bow shock is the most studied example of a collisionless shock in the solar system. It is also widely used to model or predict the behaviour at other astrophysical shock systems. Spacecraft observations, theoretical modelling and numerical simulations have led to a detailed understanding of the bow shock structure, the spatial organization of the components making up the shock interaction system, as well as fundamental shock processes such as particle heating and acceleration. In this paper we review the observations of accelerated ions at and upstream of the terrestrial bow shock and discuss the models and theories used to explain them. We describe the global morphology of the quasi-perpendicular and quasi-parallel shock regions and the foreshock. The acceleration processes for field-aligned beams and diffuse ion distribution types are discussed with connection to foreshock morphology and shock structure. The different possible mechanisms for extracting solar wind ions into the acceleration processes are also described. Despite several decades of study, there still remain some unsolved problems concerning ion acceleration at the bow shock, and we summarize these challenges. 相似文献
13.
The Magnetic Field of the Earth’s Lithosphere 总被引:2,自引:0,他引:2
Erwan Thébault Michael Purucker Kathryn A. Whaler Benoit Langlais Terence J. Sabaka 《Space Science Reviews》2010,155(1-4):95-127
The lithospheric contribution to the Earth’s magnetic field is concealed in magnetic field data that have now been measured over several decades from ground to satellite altitudes. The lithospheric field results from the superposition of induced and remanent magnetisations. It therefore brings an essential constraint on the magnetic properties of rocks of the Earth’s sub-surface that would otherwise be difficult to characterize. Measuring, extracting, interpreting and even defining the magnetic field of the Earth’s lithosphere is however challenging. In this paper, we review the difficulties encountered. We briefly summarize the various contributions to the Earth’s magnetic field that hamper the correct identification of the lithospheric component. Such difficulties could be partially alleviated with the joint analysis of multi-level magnetic field observations, even though one cannot avoid making compromises in building models and maps of the magnetic field of the Earth’s lithosphere at various altitudes. Keeping in mind these compromises is crucial when lithospheric field models are interpreted and correlated with other geophysical information. We illustrate this discussion with recent advances and results that were exploited to infer statistical properties of the Earth’s lithosphere. The lessons learned in measuring and processing Earth’s magnetic field data may prove fruitful in planetary exploration, where magnetism is one of the few remotely accessible internal properties. 相似文献
14.
The geomagnetic signal contains an enormous temporal range—from geomagnetic jerks on time scales of less than a year to the evolution of Earth’s dipole moment over billions of years. This review compares observations and numerical models of the long-term range of that signal, for periods much larger than the typical overturn time of Earth’s core. On time scales of 105–109 years, the geomagnetic field reveals the control of mantle thermodynamic conditions on core dynamics. We first briefly describe the general formalism of numerical dynamo simulations and available paleomagnetic data sets that provide insight into paleofield behavior. Models for the morphology of the time-averaged geomagnetic field over the last 5 million years are presented, with emphasis on the possible departures from the geocentric axial dipole hypothesis and interpretations in terms of core dynamics. We discuss the power spectrum of the dipole moment, as it is a well-constrained aspect of the geomagnetic field on the million year time scale. We then summarize paleosecular variation and intensity over the past 200 million years, with emphasis on the possible dynamical causes for the occurrence of superchrons. Finally, we highlight the geological evolution of the geodynamo in light of the oldest paleomagnetic records available. A summary is given in the form of a tentative classification of well-constrained observations and robust numerical modeling results. 相似文献
15.
Observations of the Earth’s magnetic field from low-Earth orbiting (LEO) satellites started very early on, more than 50 years ago. Continuous such observations, relying on more advanced technology and mission concepts, have however only been available since 1999. The unprecedented time-space coverage of this recent data set opened revolutionary new possibilities for monitoring, understanding and exploring the Earth’s magnetic field. In the near future, the three-satellite Swarm constellation concept to be launched by ESA, will not only ensure continuity of such measurements, but also provide enhanced possibilities to improve on our ability to characterize and understand the many sources that produce this field. In the present paper we review and discuss the advantages and drawbacks of the various LEO space magnetometry concepts that have been used so far, and report on the motivations that led to the latest Swarm constellation concept. We conclude with some considerations about future concepts that could possibly be implemented to ensure the much needed continuity of LEO space magnetometry, possibly with enhanced scientific return, by the time the Swarm mission ends. 相似文献
16.
Ceres appears likely to be differentiated and to have experienced planetary evolution processes. This conclusion is based on current geophysical observations and thermodynamic modeling of Ceres?? evolution. This makes Ceres similar to a small planet, and in fact it is thought to represent a class of objects from which the inner planets formed. Verification of Ceres?? state and understanding of the many steps in achieving it remains a major goal. The Dawn spacecraft and its instrument package are on a mission to observe Ceres from orbit. Observations and potential results are suggested here, based on number of science questions. 相似文献
17.
Michael J. Rycroft R. Giles Harrison Keri A. Nicoll Evgeny A. Mareev 《Space Science Reviews》2008,137(1-4):83-105
The Earth’s global atmospheric electric circuit depends on the upper and lower atmospheric boundaries formed by the ionosphere and the planetary surface. Thunderstorms and electrified rain clouds drive a DC current (~1 kA) around the circuit, with the current carried by molecular cluster ions; lightning phenomena drive the AC global circuit. The Earth’s near-surface conductivity ranges from 10?7 S?m?1 (for poorly conducting rocks) to 10?2 S?m?1 (for clay or wet limestone), with a mean value of 3.2 S?m?1 for the ocean. Air conductivity inside a thundercloud, and in fair weather regions, depends on location (especially geomagnetic latitude), aerosol pollution and height, and varies from ~10?14 S?m?1 just above the surface to 10?7 S?m?1 in the ionosphere at ~80 km altitude. Ionospheric conductivity is a tensor quantity due to the geomagnetic field, and is determined by parameters such as electron density and electron–neutral particle collision frequency. In the current source regions, point discharge (coronal) currents play an important role below electrified clouds; the solar wind-magnetosphere dynamo and the unipolar dynamo due to the terrestrial rotating dipole moment also apply atmospheric potential differences. Detailed measurements made near the Earth’s surface show that Ohm’s law relates the vertical electric field and current density to air conductivity. Stratospheric balloon measurements launched from Antarctica confirm that the downward current density is ~1 pA m?2 under fair weather conditions. Fortuitously, a Solar Energetic Particle (SEP) event arrived at Earth during one such balloon flight, changing the observed atmospheric conductivity and electric fields markedly. Recent modelling considers lightning discharge effects on the ionosphere’s electric potential (~+250 kV with respect to the Earth’s surface) and hence on the fair weather potential gradient (typically ~130 V?m?1 close to the Earth’s surface. We conclude that cloud-to-ground (CG) lightning discharges make only a small contribution to the ionospheric potential, and that sprites (namely, upward lightning above energetic thunderstorms) only affect the global circuit in a miniscule way. We also investigate the effects of mesoscale convective systems on the global circuit. 相似文献
18.
19.
S. L. England 《Space Science Reviews》2012,168(1-4):211-236
Solar thermal tides are planetary-scale waves in the neutral atmosphere with periods that are harmonics of 24?hours. In the thermosphere, they can achieve significant amplitude and can be the dominant source of variation in the atmosphere. Through their modification of the neutral atmosphere, they can also significantly modify the ionosphere, especially at low-latitudes where the dynamics of the Earth’s ionosphere is determined to a large extent by the neutral atmosphere. Much recent work has focused on characterizing and understanding the impact of one sub-group of tides, known as non-migrating tides, on the ionosphere. Whereas migrating tides are responsible for creating strong day-night variations in the ionosphere, non-migrating tides create longitudinal variations in the ionosphere, the signature of which can only be detected with distributed networks of ground-based observations or spacecraft. The present work reviews the recent observations and modeling efforts that have helped to characterize and explain this longitudinal variability. Emphasis is placed on the characteristics of tides throughout the thermosphere, their impacts on the chemical composition of the thermosphere, and impacts on the ionosphere. 相似文献
20.
Alexander S. Kovtyukh 《Space Science Reviews》2018,214(8):124
Spatial, energy and angular distributions of ion fluxes in the Earth’s radiation belts (ERB) near the equatorial plane, at middle geomagnetic latitudes and at low altitudes are systematically reviewed herein. Distributions of all main ion components, from protons to Fe (including hydrogen and helium isotopes), and their variations under the action of solar and geomagnetic activity are considered. For ions with (Zgeq 2) and especially for ions with (Z geq 9), these variations are much more than for protons, and these have no direct connection with the intensity of magnetic storms ((Z) is the charge of the atomic nucleus with respect to the charge of the proton). The main physical mechanisms for the generation of ion fluxes in the ERB and the losses of these ions are considered. Solar wind, Solar Cosmic Rays (SCR), Galactic Cosmic Rays (GCR), and Anomalous component of Cosmic Rays (ACR) as sources of ions in the ERB are considered. 相似文献