首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
In this paper, we perform numerical simulation and experimental determination of the limiting resistance of the spacecraft design elements used when developing anti-meteorite protection of spacecraft as well as protection against space debris. One possible way to increase the efficiency of protective shields and satisfy the requirements of the mass characteristics of the latter is the use of mesh barriers.  相似文献   

2.
Abstract The Cuatro Ciénegas Basin (CCB) has been identified as a center of endemism for many life-forms. Nearly half the bacterial species found in the spring systems have their closest relatives in the ocean. This raises the question of whether the high diversity observed today is the product of an adaptive radiation similar to that of the Galapagos Islands or whether the bacterial groups are "survivors" of an ancient sea, which would be of interest for astrobiology. To help answer this question, we focused on Firmicutes from Cuatro Ciénegas (mainly Bacillus and Exiguobacterium). We reconstructed the phylogenetic relationships of Firmicutes with 28 housekeeping genes and dated the resulting tree using geological events as calibration points. Our results show that marine Bacillus diverged from other Bacillus strains 838?Ma, while Bacillus from Cuatro Ciénegas have divergence dates that range from 770 to 202?Ma. The members of Exiguobacterium from the CCB conform to a much younger group that diverged from the Andes strain 60?Ma and from the one in Yellowstone 183?Ma. Therefore, the diversity of Firmicutes in Cuatro Ciénegas is not the product of a recent radiation but the product of the isolation of lineages from an ancient ocean. Hence, Cuatro Ciénegas is not a Galapagos Archipelago for bacteria but is more like an astrobiological "time machine" in which bacterial lineages survived in an oligotrophic environment that may be very similar to that of the Precambrian. Key Words: Firmicutes-Cuatro Ciénegas-Precambrian-Molecular dating-Western Interior Seaway. Astrobiology 12, 674-684.  相似文献   

3.
Coronal sources and parameters of solar wind streams during a strong and prolonged geomagnetic disturbance in June 2015 have been considered. Сorrespondence between coronal sources and solar wind streams at 1 AU has been determined using an analysis of solar images, catalogs of flares and coronal mass ejections, solar wind parameters including the ionic composition. The sources of disturbances in the considered period were a sequence of five coronal mass ejections that propagated along the recurrent solar wind streams from coronal holes. The observed differences from typical in magnetic and kinetic parameters of solar wind streams have been associated with the interactions of different types of solar wind. The ionic composition has proved to be a good additional marker for highlighting components in a mixture of solar wind streams, which can be associated with different coronal sources.  相似文献   

4.
Triple-satellite-aided capture employs gravity-assist flybys of three of the Galilean moons of Jupiter in order to decrease the amount of ΔVΔV required to capture a spacecraft into Jupiter orbit. Similarly, triple flybys can be used within a Jupiter satellite tour to rapidly modify the orbital parameters of a Jovicentric orbit, or to increase the number of science flybys. In order to provide a nearly comprehensive search of the solution space of Callisto–Ganymede–Io triple flybys from 2024 to 2040, a third-order, Chebyshev's method variant of the p-iteration solution to Lambert's problem is paired with a second-order, Newton–Raphson method, time of flight iteration solution to the VV-matching problem. The iterative solutions of these problems provide the orbital parameters of the Callisto–Ganymede transfer, the Ganymede flyby, and the Ganymede–Io transfer, but the characteristics of the Callisto and Io flybys are unconstrained, so they are permitted to vary in order to produce an even larger number of trajectory solutions. The vast amount of solution data is searched to find the best triple-satellite-aided capture window between 2024 and 2040.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号