首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
针对大气辅助捕获下多次穿越的方式,分别建立探测器气动捕获段在静止大气和旋转大气模型下的轨道动力学方程并进行相应的动力学仿真,分析旋转大气对轨道捕获的影响.根据仿真结果,给出了在两种大气模型下完成目标捕获时,任务耗时以及探测器所受的热量、过载情况,通过给定不同目标轨道近火点高度,得出两种大气模型下卫星轨道的轨道参数变化形式.结论表明:当目标轨道近火点高度较低时,旋转大气对探测器轨道参数的变化形式影响较大,应该考虑旋转大气的影响.  相似文献   

2.
Results of the Viking mission seem to indicate that there is a ubiquitous layer of highly oxidizing aeolian material covering the Martian surface. This layer is thought to oxidize organic material that may settle on it, and is therefore responsible for the lack of detection of organic matter on the planet's surface by Viking. The mechanism that creates the oxidizing condition is not well understood, nor is the extent of the oxidation potential of this material. It has been suggested that the oxidizing nature of the soil is due to photochemical reactions which create hydrogen peroxide and superoxides in the surface soil. One question of importance to planetary protection regarding this material is, what is its potential for destroying terrestrial microorganisms, thus making the surface of Mars "self-sterilizing"? Using data obtained by the gas exchange experiment on Viking, and for simplicity assuming that all of the O2 released came from H2O2, the concentration range for H2O2 on the surface of Mars can be calculated to be 25-250 ppm. The microbial disinfection rate by H2O2 is concentration dependent, and is highly variable within the microbial community. Data from our laboratory indicate that certain soil bacteria survive and grow to stationary phase in 30,000 ppm H2O2. However, the total number of organisms decreases in the presence of H2O2. These results indicate that it is doubtful that the presence of H2O2 alone on Mars would make the surface "self-sterilizing".  相似文献   

3.
A new model for the radiation environment to be found on the planet Mars due to Galactic Cosmic Rays (OCR) has been developed at the NASA Langley Research Center. Solar modulated primary particles rescaled for Mars conditions are transported through the Martian atmosphere, with temporal properties modeled with variable timescales, down to the surface, with altitude and backscattering patterns taken into account. The Martian atmosphere has been modeled by using the Mars Global Reference Atmospheric Model--version 2001 (Mars-GRAM 2001). The altitude to compute the atmospheric thickness profile has been determined by using a model for the topography based on the data provided by the Mars Orbiter Laser Altimeter (MOLA) instrument on board the Mars Global Surveyor (MGS) spacecraft. The Mars surface composition has been modeled based on averages over the measurements obtained from orbiting spacecraft and at various landing sites, taking into account the possible volatile inventory (e.g., CO2 ice, H2O ice) along with its time variation throughout the Martian year. Particle transport has been performed with the HZETRN heavy ion code. The Mars Radiation Environment Model has been made available worldwide through the Space Ionizing Radiation Effects and Shielding Tools (SIREST) website, a project of NASA Langley Research Center.  相似文献   

4.
In this paper a radiation monitoring system for manned Mars missions is described, based on the most recent requirements on crew radiation safety. A comparison is shown between the radiation monitoring systems for Earth-orbiting and interplanetary spacecraft, with similarities and differences pointed out and discussed. An operational and technological sketch of the chosen problem solving approach is also given.  相似文献   

5.
Engineering concepts for inflatable Mars surface greenhouses.   总被引:1,自引:0,他引:1  
A major challenge of designing a bioregenerative life support system for Mars is the reduction of the mass, volume, power, thermal and crew-time requirements. Structural mass of the greenhouse could be saved by operating the greenhouse at low atmospheric pressure. This paper investigates the feasibility of this concept. The method of equivalent system mass is used to compare greenhouses operated at high atmospheric pressure to greenhouses operated at low pressure for three different lighting methods: natural, artificial and hybrid lighting.  相似文献   

6.
The search for traces of extinct and extant life on Mars will be extended to beneath the surface of the planet. Current data from Mars missions suggesting the presence of liquid water early in Mars' history and mathematical modeling of the fate of water on Mars imply that liquid water may exist deep beneath the surface of Mars. This leads to the hypothesis that life may exist deep beneath the Martian surface. One possible scenario to look for life on Mars involves a series of unmanned missions culminating with a manned mission drilling deep into the Martian subsurface (approximately 3Km), collecting samples, and conducting preliminary analyses to select samples for return to earth. This mission must address both forward and back contamination issues, and falls under planetary protection category V. Planetary protection issues to be addressed include provisions stating that the inevitable deposition of earth microbes by humans should be minimized and localized, and that earth microbes and organic material must not contaminate the Martian subsurface. This requires that the drilling equipment be sterilized prior to use. Further, the collection, containment and retrieval of the sample must be conducted such that the crew is protected and that any materials returning to earth are contained (i.e., physically and biologically isolated) and the chain of connection with Mars is broken.  相似文献   

7.
The European Space Agency's studies of a Comet Nucleus Sample Return mission (ROSETTA) as its Planetary Cornerstone in its long-term programme 'Horizon 2000' and the Marsnet mission, a potential contribution of the Agency to an international network of surface stations on Mars, has revived the interest in the present state of Planetary Protection requirements. MARSNET was one of the four candidate missions selected in April 1991 for further Design Feasibility (Phase A) Studies. Furthermore, of all space agencies participating in planetary exploration activities only the United States National Aeronautics and Space Administration had a well established Planetary Protection Policy on Viking and other relevant planetary missions, whereas ESA is considering the feasibility and potential impact of a planetary protection policy on its Marsnet mission, within the framework of a tight budgetary envelope applicable to ESA's medium (M) class missions. This paper will discuss in general terms the impact of Planetary Protection measures, its implications for Marsnet and the issues arising from this for the implementation of the mission in ESA's scientific programme.  相似文献   

8.
Program MARS GLOB provides step-by-step deployment of an international network of Mars surface stations by association the MESUR NETWORK (USA), INTERMARS-NET (ESA) programs with the network of small stations and penetrators now under developing in Russia jointly with international cooperation in frameworks of the MARS-96 Project. It is offering also delivery on Mars surface two penetrators and Mars Rover. Now penetrators and Rover are developing by Russia with participation of other countries in frameworks of the MARS-98 (or MARS TOUR) Project.  相似文献   

9.
Estimates of the energetic proton environment for a Mars mission are generally extrapolated from the solar proton observations at 1 AU. We find that solar particle events may be divided into two general classes. Events dominated by a near-sun injection of particles onto interplanetary magnetic field lines leading to the spacecraft position represent the "classical" solar particle event associated with solar activity. This class of event will scale in radial distance by the classical power law extrapolation. The extended-interplanetary-shock source generates a maximum flux as the shock passes the detection location. This class of event typically generates maximum fluence, but in this case, the flux and fluence will not scale in the classical manner with radial distance.  相似文献   

10.
Human missions to Mars are planned to happen within this century. Activities associated therewith will interact with the environment of Mars in two reciprocal ways: (i) the mission needs to be protected from the natural environmental elements that can be harmful to human health, the equipment or to their operations; (ii) the specific natural environment of Mars should be protected so that it retains its value for scientific and other purposes. The following environmental elements need to be considered in order to protect humans and the equipment on the planetary surface: (i) cosmic ionizing radiation, (ii) solar particle events; (iii) solar ultraviolet radiation; (iv) reduced gravity; (v) thin atmosphere; (vi) extremes in temperatures and their fluctuations; and (vii) surface dust. In order to protect the planetary environment, the requirements for planetary protection as adopted by COSPAR for lander missions need to be revised in view of human presence on the planet. Landers carrying equipment for exobiological investigations require special consideration to reduce contamination by terrestrial microorganisms and organic matter to the greatest feasible extent. Records of human activities on the planet's surface should be maintained in sufficient detail that future scientific experimenters can determine whether environmental modifications have resulted from explorations.  相似文献   

11.
In view to prepare Mars human exploration, it is necessary to promote and lead, at the international level, a highly interdisciplinary program, involving specialists of geochemistry, geophysics, atmospheric science, space weather, and biology. The goal of this program will be to elaborate concepts of individual instruments, then of integrated instrumental packages, able to collect exhaustive data sets of environmental parameters from future landers and rovers of Mars, and to favour the conditions of their implementation. Such a program is one of the most urgent need for preparing human exploration, in order to develop mitigation strategies aimed at ensuring the safety of human explorers, and minimizing risk for surface operations. A few main areas of investigation may be listed: particle and radiation environment, chemical composition of atmosphere, meteorology, chemical composition of dust, surface and subsurface material, water in the subsurface, physical properties of the soil, search for an hypothesized microbial activity, characterization of radio-electric properties of the Martian ionosphere. Scientists at the origin of the present paper, already involved at a high degree of responsibility in several Mars missions, and actively preparing in situ instrumentation for future landed platforms (Netlander--now cancelled, MSL-09), express their readiness to participate in both ESA/AURORA and NASA programs of Mars human exploration. They think that the formation of a Mars Environment working group at ESA, in the course of the AURORA definition phase, could act positively in favour of the program, by increasing its scientific cross-section and making it still more focused on human exploration.  相似文献   

12.
Earth based Bioregenerative Life Supporting Systems (BLSS) are subject to 4 main physical factors: gravity, light, temperature and electrical environment. The first 3 are obvious to everyone, the Electrical Environment (EE) is not under the majority of prevailing conditions perceived directly by our senses. The EE is one of the important physical factors directly influencing some plants and in a less obvious way also the majority of plants. There are only two long range forces in nature: the electromagnetic and the gravitational forces. Gravity is very much weaker than the electromagnetic forces FG/FEL=10(-38), where FG is the gravitational Force and FEL are the electromagnetic Forces. The atmospheric electric field prevails all the time over the entire Earth with a mean intensity of 130 V/m. It is therefore a potent factor which may be used by some plants exposed throughout their entire life time to the atmospheric electric field. What effect should the normal atmospheric electric field have on plants? All living plants are good electrical conductors for electrostatic fields. The plants distort the normally vertical field lines, which have to be perpendicular to the plant tissue everywhere in order to avoid the extraction of energy from the field. The meristems concentrate the field lines, thus the electrically charged nutrients are supplied to the growing parts of the plant exposed to the field. This results in electrotropism in some plants. It is very well known that plants do have adaptive capabilities as compared to animals, it is important for their survival, because they cannot run away from trouble. It is found by careful observations of the behaviour of different plants that some plants do respond to the presence of the atmospheric electric field while other plants exposed to the same environment are indifferent to the atmospheric electric field. The plants growing in the Biosphere II were shielded by the metal structure of the Biosphere II. Because these plants which do make use of the atmospheric electric field are also to be found in the Biosphere II and must be deprived of this natural atmospheric electric field and in consequence of some of their natural nutrients. I have experimental evidence that at least some plants do respond to the atmospheric electric field. This effect is the most likely cause of the oxygen depletion and of the carbon dioxide accumulation in Biosphere II. Under the micro gravity encountered in space habitats the restoration of electric fields is even more important for plant growth than it is on the Earth.  相似文献   

13.
Of all the other planets in the solar system, Mars remains the most promising for further elucidating concepts about chemical evolution and the origin of life. Strategies were developed to pursue three exobiological objectives for Mars exploration: determining the abundance and distribution of the biogenic elements and organic compounds, detecting evidence of an ancient biota on Mars, and determining whether indigenous organisms exist anywhere on the planet. The three strategies are quite similar and, in fact, share the same sequence of phases. In the first phase, each requires global reconnaissance and remote sensing by orbiters to select sites of interest for detailed in situ analyses. In the second phase, lander missions are conducted to characterize the chemical and physical properties of the selected sites. The third phase involves conducting "critical" experiments at sites whose properties make them particularly attractive for exobiology. These critical experiments would include, for example, identification of organics, detection of fossils, and detection of extant life. The fourth phase is the detailed analysis of samples returned from these sites in Earth-based laboratories to confirm and extend previous discoveries. Finally, in the fifth phase, human exploration is needed to establish the geological settings for the earlier findings or to discover and explore sites that are not accessible to robotic spacecraft.  相似文献   

14.
Estimation and assessment of Mars contamination.   总被引:1,自引:0,他引:1  
Since the beginning of the exploration of Mars, more than fourty years ago, thirty-six missions have been launched, including fifty-nine different space systems such as fly-by spacecraft, orbiters, cruise modules, landing or penetrating systems. Taking into account failures at launch, about three missions out of four have been successfully sent toward the Red Planet. The fact today is that Mars orbital environment includes orbiters and perhaps debris, and that its atmosphere and its surface include terrestrial compounds and dormant microorganisms. Coming from the UN Outer Space Treaty [United Nations Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, including the Moon and Other Celestial Bodies (the "Outer Space Treaty") referenced 610 UNTS 205 - resolution 2222(XXI) of December 1966] and according to the COSPAR planetary protection policy recommendations [COSPAR Planetary Protection Policy (20 October 2002), accepted by the Council and Bureau, as moved for adoption by SC F and PPP, prepared by the COSPAR/IAU Workshop on Planetary Protection, 4/02 with updates 10/0, 2002], Mars environment has to be preserved so as not to jeopardize the scientific investigations, and the level of terrestrial material brought on and around Mars theoretically has to comply with this policy. It is useful to evaluate what and how many materials, compounds and microorganisms are on Mars, to list what is in orbit and to identify where all these items are. Considering assumptions about materials, spores and gas location and dispersion on Mars, average contamination levels can be estimated. It is clear now that as long as missions are sent to other extraterrestrial bodies, it is not possible to keep them perfectly clean. Mars is one of the most concerned body, and the large number of missions achieved, on-going and planned now raise the question about its possible contamination, not necessarily from a biological point of view, but with respect to all types of contamination. Answering this question, will help to assess the potential effects of such contamination on scientific results and will address concerns relative to any ethical considerations about the contamination of other planets.  相似文献   

15.
The magnitude, dissipation mechanism, and spatial distribution of the solar wind - magnetospheric energy source are discussed briefly. Using N2 measurements of the ESRO 4 satellite, the temperature increase in the polar thermosphere associated with this energy source are investigated. Part of the locally dissipated energy is transported toward lower latitudes. Possible modes of energy transfer are reviewed, and local time variations are documented. Some suggestions are made with respect to future empirical models of the thermosphere.  相似文献   

16.
Geologic and climatologic studies suggest that conditions on early Mars were similar to early Earth. Because life on Earth is believed to have originated during this early period (3.5 billion years ago), the Martian environment could have also been conducive to the origin of life. To investigate this possibility we must first define the attributes of an early Martian biota. Then, specific geographic locations on Mars must be chosen where life may have occurred (i.e. areas which had long standing water), and within these distinct locations search for key signatures or bio-markers of a possible extinct Martian biota. Some of the key signatures or bio-markers indicative of past biological activity on Earth may be applicable to Mars including: reduced carbon and nitrogen compounds, CO3(2-), SO4(2-), NO3-, NO2- [correction of NO2(2)], Mg, Mn, Fe, and certain other metals, and the isotopic ratios of C, N and S. However, we must also be able to distinguish abiotic from biologic origins for these bio-markers. For example, abiotically fixed N2 would form deposits of NO3- and NO2-, whereas biological processes would have reduced these to ammonium containing compounds, N2O, or N2, which would then be released to the atmosphere. A fully equipped Mars Rover might be able to perform analyses to measure most of these biomarkers while on the Martian surface.  相似文献   

17.
Galactic cosmic rays interact with the solar wind, the earth's magnetic field and its atmosphere to produce hadron, lepton and photon fields at aircraft altitudes. In addition to cosmic rays, energetic particles generated by solar activity bombard the earth from time to time. These particles, while less energetic than cosmic rays, also produce radiation fields at aircraft altitudes which have qualitatively the same properties as atmospheric cosmic rays. We have used a code based on transport theory to calculate atmospheric cosmic-ray quantities and compared them with experimental data. Agreement with these data is seen to be good. We have then used this code to calculate equivalent doses to aircraft crews. We have also used the code to calculate radiation doses from several large solar energetic particle events which took place in 1989, including the very large event that occurred on September 29th and 30th of that year. The spectra incident on the atmosphere were determined assuming diffusive shock theory.  相似文献   

18.
We discuss how superconductivity and superfluidity can be applied to solve the challenges in the exploration of the Moon and Mars. High sensitivity instruments using phenomena of superconductivity and superfluidity can potentially make significant contributions to the fields of navigation, automation, habitation, and resource location. Using the quantum nature of superconductivity, lightweight and very sensitive diagnostic tools can be made to monitor the health of astronauts. Moreover, the Moon and Mars offer a unique environment for scientific exploration. We also discuss how powerful superconducting instruments may enable scientists to seek answers to several profound questions about nature. These answers will not only deepen our appreciation of the universe, they may also open the door to paradigm-shifting technologies.  相似文献   

19.
Errors in the determination of the shortwave radiation budget from broadband satellite measurements at the top and at the bottom of a cloudless atmosphere due to uncertainties of the actual parameters of the atmosphere and the surface are derived by computer modelling. The model uses measured bidirectional reflectance functions and realistic values of the optical parameters of the atmosphere. Examples are presented which show the range of such uncertainties. Neglecting the anisotropy of the reflection function of land surfaces results in high uncertainties of the shortwave radiation budget, both at the top and the bottom of the atmosphere. The uncertainties caused by actual uncertain atmospheric parameters are low if data of the meteorological network are properly used.  相似文献   

20.
A possibility of a manned mission to Mars without exceeding the current radiation standards is very doubtful during the periods of minimum solar activity since the dose equivalent due to galactic cosmic rays exceeds currently recommended standards even inside a radiation shelter with an equivalent of 30 g cm-2 aluminum. The radiation situation at the time of maximum solar activity is determined by the occurrence of major solar proton events which are exceedingly difficult to forecast. This paper discusses the radiation environment during a manned mission to Mars in the years between minimum and maximum solar activity when the galactic cosmic ray intensity is considerably reduced, but the solar flare activity has not yet maximized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号