首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The concept of using Earth-return trajectories in connection with missions to comets was originally proposed in 1972. Papers published in the 1970's and 1980's showed that by using multiple Earth-to-Earth transfers, it was possible to construct a trajectory that would encounter several comets. This technique was used for the first time by ESA's Giotto spacecraft. Following its encounter with Halley's comet in March 1986, Giotto used a single Earth gravity-assist maneuver to intercept comet Grigg-Skjellerup in July 1992. Japan's Sakigake spacecraft tried to use Earth gravity-assist maneuvers to reach comet Honda-Mrkos-Pajdusakova in 1996, but was not successful. Earth-return trajectories are essential elements of two Discovery-class missions to comets; Stardust, and the Comet Nucleus Tour (CONTOUR). The Stardust mission will be launched in February 1999, and will return dust samples collected from comet Wild-2 to the Earth in 2006. CONTOUR is scheduled for a launch in June 2002, and will use six Earth gravity-assist maneuvers to carry out three comet encounters: Encke in 2003; Schwassmann-Wachmann-3 in 2006; and d'Arrest in 2008. An extended-mission scenario would allow CONTOUR to accomplish two additional encounters: Tempel-2 in 2015, and Encke for a second time in 2023.  相似文献   

2.
The determination of the composition of materials that make up comets is essential in trying to understand the origin of these primitive objects. The ices especially could be made in several different astrophysical settings including the solar nebula, protosatellite nebulae of the giant planets, and giant molecular clouds that predate the formation of the solar system. Each of these environments makes different ices with different composition. In order to understand the origin of comets, one needs to determine the composition of each of the ice phases. For example, it is of interest to know that comets contain carbon monoxide, CO, but it is much more important to know how much of it is a pure solid phase, is trapped in clathrate hydrates, or is adsorbed on amorphous water ice. In addition, knowledge of the isotopic composition of the constituents will help determine the process that formed the compounds. Finally, it is important to understand the bulk elemental composition of the nucleus. When these data are compared with solar abundances, they put strong constraints on the macro-scale processes that formed the comet. A differential scanning calorimeter (DSC) and an evolved gas analyzer (EGA) will make the necessary association between molecular constituents and their host phases. This combination of instruments takes a small (tens of mg) sample of the comet and slowly heats it in a sealed oven. As the temperature is raised, the DSC precisely measures the heat required, and delivers the gases to the EGA. Changes in the heat required to raise the temperature at a controlled rate are used to identify phase transitions, e.g., crystallization of amorphous ice or melting of hexagonal ice, and the EGA correlates the gases released with the phase transition. The EGA consists of two mass spectrometers run in tandem. The first mass spectrometer is a magnetic-sector ion-momentum analyzer (MAG), and the second is an electrostatic time-of-flight analyzer (TOF). The TOF acts as a detector for the MAG and serves to resolve ambiguities between fragments of similar mass such as CO and N2. Because most of the compounds of interest for the volatile ices are simple, a gas chromatograph is not needed and thus more integration time is available to determine isotopic ratios. A gamma-ray spectrometer (GRS) will determine the elemental abundances of the bulk cometary material by determining the flux of gamma rays produced from the interaction of the cometary material with cosmic ray produced neutrons. Because the gamma rays can penetrate a distance of several tens of centimeters a large volume of material is analyzed. The measured composition is, therefore, much more likely to be representative of the bulk comet than a very small sample that might have lost some of its volatiles. Making these measurements on a lander offers substantial advantages over trying to address similar objectives from an orbiter. For example, an orbiter instrument can determine the presence and isotopic composition of CO in the cometary coma, but only a lander can determine the phase(s) in which the CO is located and separately determine the isotopic composition of each reservoir of CO. The bulk composition of the nucleus might be constrained from separate orbiter analyses of dust and gas in the coma, but the result will be very model dependent, as the ratio of gas to dust in the comet will vary and will not necessarily be equal to the bulk value.  相似文献   

3.
The Inter-Agency Consultative Group (IACG) is an organization which seeks to maximize scientific returns from focused areas of space science through international cooperation. In its 11-year history the IACG has experienced both monumental success (with the collaborative exploration of Comet Halley) and, more recently, some serious growing pains in its second phase of operation, which focuses on solar terrestrial science. In this post-Cold War period, with increased interaction between countries offering greater opportunities for cooperation, the lessons to be learned from the IACG's experience will be valuable ones.  相似文献   

4.
Rosetta was selected in November 1993 for the ESA Cornerstone 3 mission, to be launched in 2003, dedicated to the exploration of the small bodies of the solar system (asteroids and comets). Following this selection, the Rosetta mission and its spacecraft have been completely reviewed: this paper presents the studies performed the proposed mission and the resulting spacecraft design.

Three mission opportunities have been identified in 2003–2004, allowing rendezvous with a comet. From a single Ariane 5 launch, the transfer to the comet orbit will be supported by planetary gravity assists (two from Earth, one from Venus or Mars); during the transfer sequence, two asteroid fly-bys will occur, allowing first mission science phases. The comet rendezvous will occur 8–9 years after launch; Rosetta will orbit around the comet and the main science mission phase will take place up to the comet perihelion (1–2 years duration).

The spacecraft design is driven (i) by the communication scenario with the Earth and its equipment, (ii) by the autonomy requirements for the long cruise phases which are not supported by the ground stations, (iii) by the solar cells solar array for the electrical power supply and (iv) by the navigation scenario and sensors for cruise, target approach and rendezvous phases. These requirements will be developed and the satellite design will be presented.  相似文献   


5.
《Acta Astronautica》2003,52(2-6):111-116
The Comet Nucleus Tour (CONTOUR) is a low-cost NASA Discovery mission designed to conduct three close flybys of comet nuclei. Selected configuration tradeoffs conducted to balance science requirements with low mission cost are reviewed. The tradeoffs discussed focus on the optical instruments and related spacecraft considerations. Two instruments are under development. The CONTOUR Forward Imager (CFI) is designed to perform optical navigation, moderate resolution nucleus/jet imaging, and imaging of faint molecular emission bands in the coma. The CONTOUR Remote Imager and Spectrometer (CRISP) is designed to obtain high-resolution multispectral images of the nucleus, conduct spectral mapping of the nucleus surface, and provide a backup optical navigation capability.Tradeoffs discussed are: (1) the impact on the optical instruments of not using reaction wheels on the spacecraft, (2) the improved performance and simplification gained by implementing a dedicated star tracker instead of including this function in CFI, (3) the improved flexibility and robustness of switching to a low frame rate tracker for CRISP, (4) the improved performance and simplification of replacing a visible imaging spectrometer by enhanced multispectral imaging in CRISP, and (5) the impact on spacecraft resources of these and other tradeoffs.  相似文献   

6.
O. Wolczek 《Acta Astronautica》1983,10(11):739-742
In spite of numerous observations and intense theoretical work already accomplished, many important questions concerning comets remain unsolved. The origin of comets is far from being elucidated. The nature of comets, of their nuclei seems to be reasonably described by the model of Whipple, yet their very structure and constitution remain hypothetical. The complex internal dynamics of active comets awaits a detailed explanation. One of the outstanding problems pertains to the very nature of the residual material remaining after the outgasing of the cometary nucleus. The problem is connected with the presence of organic matter, of their constituents as well as aggregates important to the development of life and to the hypothetical influence of such ingredients on the evolution of its forms already existing on some celestial bodies.It is obvious that irrespective to the recently devised methods and instruments new developments are needed. The paper attempts to show some novel ways of exploration of comets by the use of astronautical means. Recommendations for the realization of such future cometary missions are presented.  相似文献   

7.
8.
Mars' moons Phobos and Deimos are low-albedo, D-type bodies that may preserve samples of outer solar system material that contributed organics and volatiles to the accreting terrestrial planets. A Discovery-class mission concept described in this paper, the Mars-Moon Exploration, Reconnaissance and Landed Investigation (MERLIN), will obtain in situ measurements from Deimos to test models for the moon's origin. The measurement objectives of MERLIN are to determine Deimos' elemental and mineralogical composition, to investigate its volatile and organic content, and to characterize processes that have modified its surface. To achieve these objectives, a landed payload will provide stereo imaging and measurements of elemental and mineralogical composition and interior structure. An orbital payload will acquire global high-resolution and color imaging, putting the landing site in context by characterizing Deimos' geology. Following MOI the spacecraft flies in formation with Deimos, and uses small changes in its orbit around Mars to investigate Deimos from a range of altitudes and illuminations over 4 months. Data taken during 1- to 2-km altitude flyovers will certify a landing site. The spacecraft will be delivered to a point several kilometers above Deimos, and will navigate to landing on a fresh exposure of regolith using onboard imaging. 90 days of baseline landed operations will provide a complete set of measurements, with schedule reserve, and there is sufficient propellant to repeat the measurements at a second site.  相似文献   

9.
Small solar system bodies such as asteroids and comets are of significant interest for both scientific and human exploration missions. However, their orbital environments are among the most highly perturbed and extreme environments found in the solar system. Uncontrolled trajectories are highly unstable in general and may either impact or escape in timespans of hours to days. Even with active control, the chaotic nature of motion about these bodies can effectively randomize a trajectory within a few orbits, creating fundamental difficulties for the navigation of spacecraft in these environments. In response to these challenges our research has identified robust and stable orbit solutions and mission designs across the whole range of small body sizes and spin states that are of interest for scientific and human exploration. This talk will describe the challenges of exploring small bodies and present the practical solutions that have been discovered which enable their exploration across the range of small body types and sizes.  相似文献   

10.
空间电子、质子和紫外综合辐照模拟试验研究   总被引:16,自引:12,他引:4  
文章介绍了地面模拟地球同步轨道15年电子、质子和紫外环境的综合辐照模拟试验技术,为长寿命卫星热设计及热控涂层选型提供可靠依据。试验采用空间低能综合环境试验设备、太阳吸收率原位测试系统,针对卫星各种表面材料如S781白漆、SR107-ZK白漆、F46镀银和OSR二次表面镜等进行了空间低能综合辐照试验,与已有的飞行试验数据进行对比研究,结果表明:本次试验能够较准确地反映航天器在轨道上材料的退化现象。  相似文献   

11.
Mike Gruntman   《Acta Astronautica》2008,63(11-12):1203-1214
The solar system galactic frontier—the region where the expanding solar wind meets the surrounding galactic medium—remains poorly explored. The sheer size of the essentially asymmetric heliosphere calls for remote techniques to probe the properties of its global time-varying three-dimensional boundary. The Interstellar Boundary Explorer (IBEX) mission (launch in 2008) will image the region between the termination shock and the heliopause, the heliospheric sheath, in fluxes of energetic neutral atoms. Global imaging in extreme ultraviolet (EUV) will likely be the next logical step in remote exploration of the galactic frontier from 1 AU. Imaging in EUV will establish directional and spectral properties of (1) the glow of singly charged helium (He+) ions in the interstellar and solar wind plasmas; (2) emissions of hot plasma in the Local Bubble; and (3) characteristic emissions of the solar wind. Global imaging with ultrahigh sensitivity and ultrahigh spectral resolution will map the heliopause and reveal the three-dimensional flow pattern of the solar wind, including the flow over the Sun's poles. This article presents the emerging concept of the experiment and space mission for heliosphere global imaging in EUV.  相似文献   

12.
The Suess-Urey (S-U) mission has been proposed as a NASA Discovery mission to return samples of matter from the Sun to the Earth for isotopic and chemical analyses in terrestrial laboratories to provide a major improvement in our knowledge of the average chemical and isotopic composition of the solar system. The S-U spacecraft and sample return capsule will be placed in a halo orbit around the L1 Sun-Earth libration point for two years to collect solar wind ions which implant into large passive collectors made of ultra-pure materials. Constant Spacecraft-Sun-Earth geometries enable simple spin stabilized attitude control, simple passive thermal control, and a fixed medium gain antenna. Low data requirements and the safety of a Sun-pointed spinner, result in extremely low mission operations costs.  相似文献   

13.
Heat transfer of a two-layer fluid system has been of great importance in a variety of industrial applications. For example, the phenomena of immiscible fluids can be found in materials processing and heat exchangers. Typically in solidification from a melt, the convective motion is the dominant factor that affects the uniformity of material properties. In the layered flow, thermocapillary forces can come into an important play, which was first emphasized by a previous investigator in 1958. Under extraterrestrial environments without gravity, thermocapillary effects can be a more dominant factor, which alters material properties in processing. Control and optimization of heat transfer in an immiscible fluid system need complete understanding of the flow phenomena that can be induced by surface tension at a fluid interface. The present work is focused on understanding of the magnetic field effects on thermocapillary convection, in order to optimize material processing. That is, it involves the study of the complicated phenomena to alter the flow motion in crystal growth. In this effort, the Marangoni convection in a cavity with differentially heated sidewalls is investigated with and without the influence of a magnetic field. As a first step, numerical analyzes are performed, by thoroughly investigating influences of all pertinent physical parameters. Experiments are then conducted, with preliminary results, for comparison with the numerical analyzes.  相似文献   

14.
《Acta Astronautica》1986,13(4):185-196
As a result of studies undertaken during 1981 and 1982, in support of NASA's Solar System Exploration Committee activities, several new approaches have been identified for development of flight hardware as well as ground systems for the execution of U.S. planetary missions through the close of the century. This paper will summarize these new approaches for achieving lower cost in planetary exploration in three different ways:
  • •• Use of modified “production line” spacecraft developed by aerospace companies for scientific and commercial use in earth orbit—study results will be discussed which demonstrate that with only modest modifications to existing earth orbiting spacecraft, excellent results can be expected at planetary targets in the inner solar system ranging from Venus to the inner portions of the asteroid belt. Use of both communications satellites typical of those used in geosynchronous applications, as well as low earth orbiting scientific and meteorological satellites will be discussed. The range of changes and the rationale for these changes required to perform planetary missions will be displayed in detail.
  • •• The development of a multi-mission modular type spacecraft for planetary missions—a new approach and new flexible spacecraft design proposed for development for planetary missions to comets, main-belt asteroids, and the outer planets will be identified. This Mariner Mark II spacecraft will enable reconfiguration at low cost for adaptation to a wide range of missions. Design concepts which draw heavily on early planetary missions as well as technology developments that are expected to be available in the late 80's and early 90's will be described in detail.
  • •• Development of low-cost multi-mission end-to-end information system—a system design including spacecraft command and data handling system requirements, as well as an architecture for a cost effective multi-mission operations system will be described. This system is intended to be applied to both classes of spacecraft/missions described above.
  相似文献   

15.
Jennifer R. Tanzman   《Acta Astronautica》2008,63(11-12):1239-1245
Solar TErrestrial RElations Observatory (STEREO), the third mission in NASA's Solar Terrestrial Probes program, launched aboard a single Delta II 7925 launch vehicle on October 25, 2006 from Cape Canaveral. This two-year mission employs two nearly-identical, space-based observatories, one ahead of the Earth in its orbit, and the other trailing behind, to provide the first stereoscopic measurements of the sun and its coronal mass ejections, or CMEs. The STEREO observatories utilize four sets of solar arrays, each of which experienced a two-stage deployment on-orbit. This paper illustrates material considerations in the solar array subsystem design. It first focuses on the solar array substrate, considering material coefficient of thermal expansion (CTE) concerns when choosing a substrate laminate to which the solar cells will adhere. It then explores a similar issue when choosing a substrate insert material. Next, the focus shifts to material considerations in the solar array hinge design. This design was driven not just by function, but by a host of different material considerations, ranging from mass savings to fabrication time and cost.  相似文献   

16.
《Acta Astronautica》2009,64(11-12):1239-1245
Solar TErrestrial RElations Observatory (STEREO), the third mission in NASA's Solar Terrestrial Probes program, launched aboard a single Delta II 7925 launch vehicle on October 25, 2006 from Cape Canaveral. This two-year mission employs two nearly-identical, space-based observatories, one ahead of the Earth in its orbit, and the other trailing behind, to provide the first stereoscopic measurements of the sun and its coronal mass ejections, or CMEs. The STEREO observatories utilize four sets of solar arrays, each of which experienced a two-stage deployment on-orbit. This paper illustrates material considerations in the solar array subsystem design. It first focuses on the solar array substrate, considering material coefficient of thermal expansion (CTE) concerns when choosing a substrate laminate to which the solar cells will adhere. It then explores a similar issue when choosing a substrate insert material. Next, the focus shifts to material considerations in the solar array hinge design. This design was driven not just by function, but by a host of different material considerations, ranging from mass savings to fabrication time and cost.  相似文献   

17.
The mass estimation of small bodies in the solar system—such as comets or minor planets—with an accuracy sufficient to get scientific information is difficult. The ground-based range-rate measurements are not practicable for bodies smaller than 100 km diameter.A proof mass, ejected from the spacecraft before the flyby and whose relative trajectory is determined with onboard measurements can give very good results even for small bodies. This paper presents the expected accuracy of mass determination depending on ballistic conditions (relative velocity and closest approach), type and accuracy of measurements (range, optical).  相似文献   

18.
Statistical studies of properties of the solar wind and interplanetary magnetic field, based on an extended database for the period 1963–2007 including four solar cycles, show that the Gaussian approximation well suites for some parameters as the probability distribution of their numerical values, while for others the lognormal law is preferred. This paper gives an interpretation of these results as associated with predominance of linear or nonlinear processes in composition and interaction of various disturbances and irregularities propagating and originating in the interior of the Sun and its atmosphere, including the solar corona and the solar wind running away from it. Summation of independent random components of disturbances leads, according to the central limit theorem of the probability theory, to the normal (Gaussian) distributions of quantities proper, while their multiplication leads to the normal distributions of logarithms. Thus, one can discuss the algebra of events and associate observed statistical distinctions with one or another process of formation of irregularities in the solar wind. Among them there are impossible events (having null probability) and reliable events (occurring with 100% probability). For better understanding of the relationship between algebra and statistics of events in the solar wind further investigations are necessary.  相似文献   

19.
An overall bi-directional panoramic solar system exploration activity, not just looking at the solar system at a macro level and helping to build a simulation model for the solar system, but the probe will also be able to explore the Milky Way and the vast universe from a much wider perspective. By observing the characteristics of the solar system, solar wind, ionization envelope and other parameters from a bi-directional panorama on both sides of the solar ecliptic plane, it will assist the scientific community and human kind to understand the solar system in a more extensive, deeper and systematic way than before.The exploration can be done in two steps. The first step is to launch a solar polar probe. Secondly to launch a bi-directional probe orbiting the galaxy in sync with the sun.  相似文献   

20.
为研究太阳能收集系统在未来空间太阳能电站(SSPS)中的发展和应用,对比和分析国内外典型系统设计方案的结构特点、光收集特性及优、缺点,展望空间太阳能电站太阳能收集系统的发展趋势,并提出对新材料、新结构、新技术、新理论和新方法的发展和应用需求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号