首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Spatial perspective taking is the ability to reason about spatial relations relative to another’s viewpoint. Here, we propose a mechanistic hypothesis that relates mental representations of one’s viewpoint to the transformations used for spatial perspective taking. We test this hypothesis using a novel behavioral paradigm that assays patterns of response time and variation in those patterns across people. The results support the hypothesis that people maintain a schematic representation of the space around their body, update that representation to take another’s perspective, and thereby to reason about the space around their body. This is a powerful computational mechanism that can support imitation, coordination of behavior, and observational learning.  相似文献   

2.
Abstract

The nature of route learning in terms of the memorizing of landmarks was investigated. In Experiment 1, participants memorized landmarks while being guided through a computer-simulated hallway (dynamic, with spatial context), or while viewing the landmarks one by one in front of a black background (static, without context). Two more conditions completed the 2 × 2 design. One condition preserved the dynamic landmark viewing properties (observers approached each object, passed it, turned to the next object, and so on), but the background was black (dynamic, without context). In the other condition the observer saw a stationary display of each object within a hallway, but did not approach the object (static, with context). Serial recall was much better after viewing the landmarks in the dynamic presentation format with spatial context than in the other conditions. Experiment 2 showed that the superior performance in the dynamic condition with context was abolished when all hallway segments were equally long. This implies that metric information is a component of route knowledge at a very early stage, which is incompatible with the dominant framework, but is compatible with the alternative framework for spatial microgenesis.  相似文献   

3.
How do people describe the location of a target object to another? This task requires a reference object or frame and terms of reference. Traditional linguistic analyses have loosely organized perspectives around people, objects, or environments as reference objects, using reference terms based on a viewpoint or the intrinsic sides of an object, such as left, right, front, and back or based on the environment, such as north, south, east, and west. In actual communication, social, spatial, and cognitive factors may also affect perspective choice. We examine those factors by varying the spatial information (landmarks and cardinal directions), the communication task (relative cognitive burden to speakers and addressees), and the culture of participants (American and Japanese). Speakers used addressees' perspectives more when addressees had the greater cognitive burden. They also used landmarks and cardinal directions when they were available, especially to avoid difficult discriminations like left/right. Some cases appearing to be perspective taking can be interpreted as using a person as a landmark. Finally, terms like near indicating close proximity were preferred to far and to terms requiring projection of directions. Globally, perspective choices of American and Japanese samples were strikingly similar; that is, Japanese did not select addressees' perspectives more than Americans. The traditional linguistic analyses need to be enhanced to account for effects of cognitive, situational, and social factors.  相似文献   

4.
Problem-solving often requires imagining spatial changes. Object-based transformations allow imagining an object in a different orientation. Perspective transformations allow imagining changes in one's viewpoint. Three experiments tested the hypothesis that these two transformations are dissociable and specialized for different situations, by manipulating instructions and task parameters and measuring response times, errors, and introspective reports. Human experience with small objects such as telephones and clothes irons consists mostly of manipulation or observed manipulation, which is characterized by object-based transformations. Consistent with this experience, when participants made judgments about small manipulable objects, they showed a strong tendency to use object-based transformations. Experience with human bodies is more varied, including both object-like interactions and interactions in which one must estimate another's perspective. Accordingly, when making judgments about pictures of bodies, participants' selection of a spatial transformation depended on the type of judgment that needed to be made. When instructions violated these natural mappings, performance was impaired. These data argue for the view that multiple spatial transformation systems evolved to solve different spatial reasoning problems.  相似文献   

5.
Reference frames are representations that parse space. In the case of spatial terms, reference frames mediate the mapping of linguistic expressions onto spatial configurations of objects. In the sentence ``The fly is above the cat,' ``above' is defined with respect to a reference frame that is imposed on the cat. Different types of reference frames can be used to define spatial terms, each based on a different source of information. For example, gravity, the orientation of objects in the scene or the orientation of the viewer can all be used to set the orientation of a reference frame. When these reference frames disagree (because the viewer is reclining or because the objects in the scene are overturned), there are competing definitions for the spatial term, resulting in the need for reference frame selection. The purpose of this paper is to review a line of research that examines reference frame selection in the context of spatial language. This work shows that all reference frames are initially active and assign a direction to a spatial term. Moreover, this activation is automatic, and is followed by the selection of a single reference frame, with selection accompanied by inhibition of the non-selected frames. Parallels between reference frame selection in language and in perception and attention are discussed.  相似文献   

6.
Environmental reference systems for large-scale spaces   总被引:1,自引:1,他引:0  
Human navigation in well-known environments is guided by stored memory representations of spatial information. In three experiments (N = 43) we investigated the role of different spatial reference systems when accessing information about familiar objects at different locations in the city in which the participants lived. Our results indicate that two independent reference systems underly the retrieval of spatial knowledge. Environmental characteristics, e.g., the streets at an intersection, determine which headings are easier to imagine at a given location and lead to differences in accessibility of spatial information (orientation-specific behavior). In addition, access to spatial information depends on the relative direction of a location with respect to the imagined heading, such that information about locations imagined in front of oneself is easier to access than about locations towards the back. This influence of an egocentric reference system was found for environmental knowledge as well as map-based knowledge. In light of these reference system effects, position-dependent models of spatial memory for large-scale environments are discussed. To account for the simultaneous effect of an environmental and an egocentric reference system, we present a 2-level model of spatial memory access.  相似文献   

7.
This study presents two experiments that examine howindividuals learn relative directions betweenlandmarks in a desktop virtual environment. Subjectswere presented snapshot images of different virtualenvironments containing distinguishing landmarks anda road network. Following the presentation of eachvirtual environment, subjects were given a relativedirection test. The relative direction test involvedindicating the direction of hidden landmarks fromdifferent vantage points in the environment. Half ofthese vantage points were presented during thelearning phase, while the other half were novel.Results showed that subjects learned relativedirections between landmarks equally well when sceneswere presented in either a sequential or random order.Furthermore, viewing a configuration of landmarks ina desktop virtual environment from multipleperspectives produced a viewpoint dependentrepresentation in memory. Subjects had significantlygreater response times for new viewing perspectives,as compared to previously viewed scenes. Thisviewpoint dependent representation of the environmentpersisted despite learning under conditions ofspatio-temporal discontinuity and changes to anenvironmental frame of reference.  相似文献   

8.
ABSTRACT

This study investigated the effects of featural information (landmarks) and geometric information (pre-exposure to a structural map) and their possible interaction during the process of spatial knowledge acquisition of 8- and 11-year-old children and adults in a virtual environment. The study confirmed the well-known result of a developmental achievement in spatial cognition from childhood to adulthood. Although landmarks and the pre-exposure to a structural map did not affect the time to learn a specific route, they influenced the use of behavior in spatial learning and eased the acquisition of spatial knowledge measured by a route reversal and map-drawing tasks. Children and adults are able to integrate featural and geometric information in the spatial knowledge acquisition process in an environmental space, but their integration depends on the spatial processing stages that are investigated. Moreover, it was successfully demonstrated that the use of desktop virtual environments seems to be appropriate to investigate the development of spatial cognition.  相似文献   

9.
归纳总结了应用于可见光测量的空间标记非编码设计原则,例举了棋盘格型、栅格型、圆型等3种典型的非编码标记图案设计,分别阐述了各标记特征点中心定位方法和计算过程,开展了对比试验,结果表明:圆型非编码标记图案设计及其特征点中心定位精度明显高于其他两种图案,其图案设计简捷、特征点突出易于识别、在像平面中呈现各向同性、点中心定位精度高、计算速度快、噪声抑制能力强。  相似文献   

10.
11.
Spatial short-term memory for single target positions is subject to distortions which depend on the spatial layout of visual landmarks. Here, participants had to reproduce the positions of briefly presented targets in the context of three-landmark configurations presented in various orientations. Symmetry properties of distortional patterns were determined by the intrinsic reference system of the landmark configuration as well as by the environment-or body-centered vertical axis. Symmetry was best about the cardinal axes of the landmark system irrespective of their orientation, but symmetry of non-cardinal axes was enhanced when these axes were aligned with the extrinsic vertical. Results are inconsistent with most current models of spatial memory distortions but in line with models explaining distortions in terms of attentional processes in topographical neuronal networks.  相似文献   

12.
To investigate changes in spatial orientation ability and walking performance following space flight, 7 astronaut subjects were asked pre- and post-flight to perform a goal directed locomotion paradigm which consisted of walking a triangular path with and without vision. This new paradigm, involving inputs from different sensory systems, allows quantification of several critical parameters, like orientation performance, walking velocities and postural stability, in a natural walking task. The paper presented here mainly focusses on spatial orientation performance quantified by the errors in walking the previously seen path without vision. Errors in length and reaching the corners did not change significantly from pre- to post-flight, while absolute angular errors slightly increased post-flight. The significant decrease in walking velocity and a change in head-trunk coordination while walking around the corners of the path observed post-flight may suggest that during re-adaptation to gravity the mechanisms which are necessary to perform the task have to be re-accomplished.  相似文献   

13.
Complex objects are better recognized under a specific orientation. When presented upside down, a face, even very familiar, is recognized with greater difficulty than when presented upright ("Inversion effect"). Up to now it was not possible to decide whether the direction provided by gravity or the one provided by the retina and the body constitutes the spatial reference involved in this "Inversion effect". Three cosmonautes learned photographed faces on the ground and had to recognize them both on ground and on flight. Other photographed faces were learned in flight and where presented for recognition on flight. Results show that the Inversion effect is still present on flight for faces that have been learned on ground as well as for those learned on flight. Persistence of the inversion effect in 0-G shows that gravity is not involved as a spatial reference in recognition of faces. Learning and recognition performances of faces learned in flight were significantly lower than performances for faces learned on ground. A possible role of gravity in configural processing, but not in the Inversion effect, is suggested.  相似文献   

14.
ABSTRACT

The ability to mentally represent spatial information is a fundamental cognitive process. To many people, this process feels a bit like visual perception, hence the term ‘spatial visualization’. In this paper, we describe a method for measuring the accuracy of spatial visualization, specifically visualization of a complex path in imaginary space. A critical feature of this method (called Path Visualization) is that it relies on the detection of intersections in a visualized path. Intersection detection is an inherently spatial task that requires a spatial representation. In this paper, we show how the Path Visualization method works, and how it can be customized to address several key research issues in human spatial cognition.  相似文献   

15.
In order to maintain valid situation awareness, people need to update the spatial representations of their surroundings as objects, including themselves, move. The present study investigates the properties of spatial updating in the intrinsic frame of reference, where spatial relations are represented with respect to an external object (other than the viewer self) with an intrinsic reference direction. Three experiments were conducted using a task of direction pointing. It was found that given a relatively stable intrinsic reference direction, responses to a small number of salient objects were faster than responses to non-salient objects (Experiment 1 and Experiment 3). The salience effect disappeared when the intrinsic reference direction was no longer stable (Experiment 2). Furthermore, all three experiments revealed a type of orientation dependence similar to that found in egocentric spatial updating. Our results indicate that spatial updating in the intrinsic reference system can be easy only if a fixed reference direction is maintained and the number of objects that need to be tracked is limited.  相似文献   

16.
Within psycholinguistics, the dimensional conception of space is described through a variety of theoretical constructs, e.g., frames of reference, perspectives, strategies, and patterns. The objective of this paper is to introduce a uniform classification of the alternatives of dimensionally conceiving of object relations, derived from the functional and morphological asymmetries of the human body which define an anthropomorphous Origo, and from our ability to mentally project the Origo into positions and orientations other than we actually occupy. Particularly, the conception of dimensional relations on the first horizontal line is explained through the principle of perceptual accessibility of objects; this allows for the uniform treatment of (almost) all conceptual alternatives from basic psychological principles. Finally, some implications of this anthropomorphological view for the human cognition of dimensional relations are discussed and underpinned with empirical results.  相似文献   

17.
Abstract

We investigated the influence of environmental axes in a baseball field. In Experiment 1, participants walked either a path in the prototypical orientation (home plate to second base) or one which was rotated 225°. Recall for object locations was best when participants imagined themselves aligned with axes salient from the experienced orientation. In Experiment 2, when learning was through a route text, there was less of an influence of environmental axes. In Experiment 3, when participants walked both paths, memories were good for the atypical orientation, suggesting that task-specific spatial cues can be more influential than a prior conceptual north.  相似文献   

18.
ABSTRACT

The goal of this paper is to present a logic-based formalism for representing knowledge about objects in space and their movements, and show how this knowledge could be built up from the viewpoint of an observer immersed in a dynamic world. In this paper space is represented using functions that extract attributes of depth, size and distance from snapshots of the world. These attributes compose a novel spatial reasoning system named Depth Profile Calculus (DPC). Transitions between qualitative relations involving these attributes are represented by an extension of this calculus called Dynamic Depth Profile Calculus (DDPC). We argue that knowledge about objects in the world could be built up via a process of abduction on DDPC relations.  相似文献   

19.
Path integration or 'dead reckoning' is the ability to keep track of relative position using self-motion signals that convey information about speed and direction of movement. Most animal species, including humans, exhibit some degree of path integration capability and neurophysiological studies have demonstrated that self-motion signals are sufficient to update internal representations of both position and orientation. In the present study, human subjects were required to monitor their position or orientation on the basis of unstructured optic flowfields. Trials were conducted at different speeds to examine the accuracy of path integration and rates of random error accumulation, and at two different head azimuths to prevent a confounding strategy of position updating based primarily on tracking changes in the angular declination of distant landmarks with respect to the horizon. Participants integrated the speed of visual motion to update accurately a representation of their position and orientation within the environment. Consistent with the characteristics of real-world path integration, errors accumulated linearly with the magnitude of position and orientation estimation. We conclude that coherent optic flowfields provide a sufficient basis for humans to keep track of their position and orientation relative to remembered landmarks.  相似文献   

20.
We tested the hypothesis that a route's memorability is dependent on the frequency with which people are exposed to visual landmarks. Undergraduates learned either a route through an urban area lacking visually salient features, or a route in a neighborhood with many shops and urban objects. They were then asked to recall the learned route in the form of route directions and sketch maps. The results showed higher recall performance for the richer environment. When presented with photographs depicting scenes along the route, participants exposed to the richer environment had higher recognition scores and shorter response times than the others. The data confirm the functional role of landmarks in route memory and wayfinding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号