共查询到20条相似文献,搜索用时 15 毫秒
1.
J.G. Luhmann S.A. Ledvina D. Odstrcil M.J. Owens X.-P. Zhao Yang Liu Pete Riley 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
The problem of modeling solar energetic particle (SEP) events is important to both space weather research and forecasting, and yet it has seen relatively little progress. Most important SEP events are associated with coronal mass ejections (CMEs) that drive coronal and interplanetary shocks. These shocks can continuously produce accelerated particles from the ambient medium to well beyond 1 AU. This paper describes an effort to model real SEP events using a Center for Integrated Space weather Modeling (CISM) MHD solar wind simulation including a cone model of CMEs to initiate the related shocks. In addition to providing observation-inspired shock geometry and characteristics, this MHD simulation describes the time-dependent observer field line connections to the shock source. As a first approximation, we assume a shock jump-parameterized source strength and spectrum, and that scatter-free transport occurs outside of the shock source, thus emphasizing the role the shock evolution plays in determining the modeled SEP event profile. Three halo CME events on May 12, 1997, November 4, 1997 and December 13, 2006 are used to test the modeling approach. While challenges arise in the identification and characterization of the shocks in the MHD model results, this approach illustrates the importance to SEP event modeling of globally simulating the underlying heliospheric event. The results also suggest the potential utility of such a model for forcasting and for interpretation of separated multipoint measurements such as those expected from the STEREO mission. 相似文献
2.
选取第23太阳活动周(1997—2006年)期间542例由太阳爆发活动驱动的行星际激波事件,分析确定了太阳源头和行星际空间中影响行星际激波能否到达地球轨道的关键物理参数;在此基础上,建立了预测行星际激波能否到达地球的新预报模型(EdEaSPM). 回溯预报结果表明,EdEaSPM模型的预报成功率约为66%,略高于国际一流预报模型的预报成功率;EdEaSPM模型的虚报率未超过50%,改善了当前国际主流模型虚报率较大的情况;对于偏度指标,虽然当前所有模型的偏度值均大于1,但EdEaSPM模型的偏度值最接近于1且明显小于其他模型的偏度值;EdEaSPM模型的其他评价指标也都高于国际主流模型的相应指标. 此外,选取2012年期间的激波事件对EdEaSPM模型进行了预报检验,预测结果与实际情况吻合. EdEaSPM模型不仅能够提前约1~3天进行预报,而且预报效果与国际一流模型具有可比性,尤其是在提高预报成功率及降低虚报率方面具有一定优势. 相似文献
3.
太阳高能粒子(Solar Energetic Particle,SEP)事件是影响地球空间以及深空辐射环境的主要因素之一。“渐进型”太阳高能粒子事件中的高能粒子主要来自于日冕物质抛射(Coronal Mass Ejection,CME)所驱动的激波扩散加速(Diffusive Shock Acceleration,DSA)过程。CME驱动的激波在行星际的传播过程中,其结构不断演化,进而影响到高能粒子的加速过程。本文利用二维太阳高能粒子加速和传播模型,对发生于2014年4月18日的太阳高能粒子事件实例进行了数值模拟。模型考察了黄道面上2 AU的距离以内包含地球所在位置的4个不同点,分别计算了每个点上高能粒子的通量。数值模拟的结果表明:黄道面内不同位置的观察点,与激波波前的磁力线连接不同,从而导致观察点处高能粒子的通量有着显著的差异。该模型的计算结果可以为深空探测计划开展辐射环境研究提供必要的输入。 相似文献
4.
Significant progress has been made by Chinese scientists in research of interplanetary physics during the recent two years (2018-2020). These achievements are reflected at least in the following aspects:Activities in solar corona and lower solar atmosphere; solar wind and turbulence; filament/prominence, jets, flares, and radio bursts; active regions and solar eruptions; coronal mass ejections and their interplanetary counterparts; other interplanetary structures; space weather prediction methods; magnetic reconnection; Magnetohydrodynamic (MHD) numerical modeling; solar energetic particles, cosmic rays, and Forbush decreases; machine learning methods in space weather and other aspects. More than one hundred and forty papers in the academic journals have been published in these research directions. These fruitful achievements are obtained by Chinese scholars in solar physics and space physics either independently or through international collaborations. They greatly improve people's understanding of solar activities, solar eruptions, the corresponding space weather effects, and the Sun-Earth relations. Here we will give a very brief review on the research progress. However, it must be pointed out that this paper may not completely cover all achievements in this field due to our limited knowledge. 相似文献
5.
During the past two years (2016-2018), great achievements have been made in the Chinese research of interplanetary physics, with nearly 100 papers published in the academic journals. The achievements are including but not limited to the following topics:solar corona; solar wind and turbulence; filament/prominence and jets; solar flare; radio bursts; particle acceleration at coronal shocks; magnetic flux ropes; instability; instrument; Coronal Mass Ejections (CMEs) and their interplanetary counterparts; Magnetohydrodynamic (MHD) numerical modeling; solar energetic particles and cosmic rays. The progress further improves our understanding of the eruptions of solar activities, their evolutions and propagations in the heliosphere, and final geoeffects on our Earth. These results were achieved by the Chinese solar and space scientists independently or via international collaborations. This paper will give a brief review of these achievements. 相似文献
6.
A. Damiani P. Diego M. Laurenza M. Storini C. Rafanelli 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
Data from geostationary operational environmental satellite (GOES) series were used to identify intense solar energetic particle (SEP) events occurred during the solar activity cycle no. 23. We retrieved O3, NO, NO2, HNO3, OH, HCl and OHCl profiles coming from different satellite sensors (solar occultation and limb emission) and we looked for the mesospheric/stratospheric response to SEPs at high terrestrial latitudes. The chemistry of the minor atmospheric components is analysed to evaluate the associated odd nitrogen (NOx) and odd hydrogen (HOx) production, able to cause short (h) and medium (days) term ozone variations. We investigated the effects of SEPs on the polar atmosphere in three different seasons, i.e., January 2005, April 2002 and July 2000. The inter-hemispheric variability of the ozone, induced by the SEP series of January 2005, has been compared with the effects connected both to larger and quite similar events. We found that during SEP events: (i) solar illumination is the key factor driving SEP-induced effects on the chemistry of the polar atmosphere; (ii) even events with limited particle flux in the range 15–40 MeV are able to change the abundance of the minor constituents in the mesosphere and upper stratosphere. 相似文献
7.
J.G. Luhmann Adam Mann 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2007,39(12):1882-1889
Peak fluxes are an important property of gradual solar energetic particle (SEP) event time profiles from both astro/heliophysical and applications perspectives. However, the peak flux in an event may occur at the event onset, or at the time of the interplanetary shock arrival (the ESP or energetic storm particles). This makes an important difference in the interpretation of the peak flux, and in any attempts to characterize or model it. This paper describes a study of SEP data sets from ACE, IMP-8 and GOES toward determining the relative properties of these peak fluxes for protons with energies near 1, 10, and 50 MeV. The results suggest that for gradual events with both peaks, the ESP peak often dominates at 1 MeV energies and is dominant about half the time at 10 MeV. Moreover, the prompt peak fluxes can be used to estimate the shock peak (ESP event) up to days ahead, especially in the lower energy range. 相似文献
8.
XIONG Ming LIU Ying LIU Hao LI Baoquan ZHENG Jianhua ZHANG Cheng XIA Lidong ZHANG Hongxin RAO Wei CHEN Changya SUN Weiying WU Xia DENG Yuanyong HE Han JIANG Bo WANG Yuming WANG Chuanbing SHEN Chenglong ZHANG Haiying ZHANG Shenyi YANG Xuan SANG Peng WU Ji 《空间科学学报》2016,36(3):245-266
The Solar Polar ORbit Telescope (SPORT) project for space weather mission has been under intensive scientific and engineering background studies since it was incorporated into the Chinese Space Science Strategic Pioneer Project in 2011.SPORT is designed to carry a suite of remote-sensing and in-situ instruments to observe Coronal Mass Ejections (CMEs),energetic particles,solar high-latitude magnetism,and the fast solar wind from a polar orbit around the Sun. The first extended view of the polar regions of the Sun and the ecliptic enabled by SPORT will provide a unique opportunity to study CME propagation through the inner heliosphere,and the solar high-latitude magnetism giving rise to eruptions and the fast solar wind.Coordinated observations between SPORT and other spaceborne/ground-based facilities within the International Living With a Star (ILWS) framework can significantly enhance scientific output.SPORT is now competing for official selection and implementation during China's 13th Five-Year Plan period of 2016-2020. 相似文献
9.
Solar transients and their related interplanetary counterparts have severe effects on the space environments of the Earth. Therefore, the research of solar corona and interplanetary physics has become the focus of study for both solar and space scientists. Considerable progress has been achieved in these aspects by the solar and space physics community of China during 2012–2014, which will be given in this report. The brief report summarizes the research advances of solar corona and interplanetary physics into the following parts: solar wind origin and turbulence, coronal waves and seismology, solar eruptions, solar energetic particle and galactic cosmic ray, magnetic reconnection,Magnetohydrodynamic(MHD) models and their applications, waves and structures in solar wind,propagation of ICMEs/shocks and their arrival time predictions. These research achievements have been achieved by Chinese solar and space scientists independently or via international collaborations. 相似文献
10.
A. Aran B. Sanahuja D. Lario 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,42(9):1492-1499
We have developed an operational code, SOLPENCO, that can be used for space weather prediction schemes of solar energetic particle (SEP) events. SOLPENCO provides proton differential flux and cumulated fluence profiles from the onset of the event up to the arrival of the associated traveling interplanetary shock at the observer’s position (either 1.0 or 0.4 AU). SOLPENCO considers a variety of interplanetary scenarios where the SEP events develop. These scenarios include solar longitudes of the parent solar event ranging from E75 to W90, transit speeds of the associated shock ranging from 400 to 1700 km s−1, proton energies ranging from 0.125 to 64 MeV, and interplanetary conditions for the energetic particle transport characterized by specific mean free paths. We compare the results of SOLPENCO with flux measurements of a set of SEP events observed at 1 AU that fulfill the following four conditions: (1) the association between the interplanetary shock observed at 1 AU and the parent solar event is well established; (2) the heliolongitude of the active region site is within 30° of the Sun–Earth line; (3) the event shows a significant proton flux increase at energies below 96 MeV; (4) the pre-event intensity background is low. The results are discussed in terms of the transit velocity of the shock and the proton energy. We draw conclusions about both the use of SOLPENCO as a prediction tool and the required improvements to make it useful for space weather purposes. 相似文献
11.
A.V. Grigoryev S.A. Starodubtsev V.G. Grigoryev I.G. Usoskin K. Mursula 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(6):955-961
Fluctuations of cosmic rays and interplanetary magnetic field upstream of interplanetary shocks are studied using data of ground-based polar neutron monitors as well as measurements of energetic particles and solar wind plasma parameters aboard the ACE spacecraft. It is shown that coherent cosmic ray fluctuations in the energy range from 10 keV to 1 GeV are often observed at the Earth’s orbit before the arrival of interplanetary shocks. This corresponds to an increase of solar wind turbulence level by more than the order of magnitude upstream of the shock. We suggest a scenario where the cosmic ray fluctuation spectrum is modulated by fast magnetosonic waves generated by flux of low-energy cosmic rays which are reflected and/or accelerated by an interplanetary shock. 相似文献
12.
On 14 October 1999, the Chinese-Brazil earth resource satellite (CBERS-1) was launched in China. On board of the satellite there was an instrument designed at Peking University to detect the energetic particle radiation inside the satellite so the radiation fluxes of energetic particles in the cabin can be monitored continuously. Inside a satellite cabin, radiation environment consists of ether penetrated energetic particles or secondary radiation from satellite materials due to the interactions with primary cosmic rays.Purpose of the detectors are twofold, to monitor the particle radiation in the cabin and also to study the space radiation environment The data can be used to study the radiation environment and their effects on the electronics inside the satelhte cabin. On the other hand, the data are useful in study of geo-space energetic particle events such as solar proton events, particle precipitation and variations of the radiation belt since there should be some correlation between the radiation situation inside and outside the satellite.The instrument consists of two semi-conductor detectors for protons and electrons respectively. Each detector has two channels of energy ranges. They are 0.5-2MeV and ≥2MeV for electrons and 5-30MeV and 30-60MeV for protons. Counting rate for all channels are up to 104/(cm2@s)and power consumption is about 2.5 W. There are also the additional functions of CMOS TID (total integrated dose) effect and direct SEU monitoring. The data of CBMC was first sent back on Oct. 17 1999 and it's almost three years from then on. The detector has been working normally and the quality of data is good.The preliminary results of data analysis of CBMC not only reveal the effects of polar particle precipitation and radiation belt on radiation environment inside a satellite, but also show some important features of the geo-space energetic particle radiation.As one of the most important parameters of space weather, the energetic charged particles have great influences on space activities and ground tech nology. CBMC is perhaps the first long-term on-board special equipment to monitor the energetic particle radiation environment inside the satellite and the data it accnmulated are very useful in both satellite designing and space research. 相似文献
13.
R.A. Nymmik 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
Based on the author’s experience in ISO TC20/SC14 Working Group 4, this paper discusses the common problems encountered when developing a standard for solar energetic particle (SEP) fluxes. The problem involving the reliability of the distribution function describing the SEP events and the interpolation of this function into the region of not-yet-observed large events are discussed. The problems with describing the fluences of SEPs over a wide range of energy in the form of energetic spectra are analyzed. Requirements for SEP flux models are formulated. The reliability of some SEP flux models is determined by comparing their predictions with the experimental data. 相似文献
14.
15.
S.W. Kahler B.R. Ragot 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
A current serious limitation on the studies of solar energetic particle (SEP) events is that their properties in the inner heliosphere are studied only through in situ spacecraft observations. Our understanding of spatial distributions and temporal variations of SEP events has come through statistical studies of many such events over several solar cycles. In contrast, flare SEPs in the solar corona can be imaged through their radiative and collisional interactions with solar fields and particles. We suggest that the heliospheric SEPs may also interact with heliospheric particles and fields to produce signatures which can be remotely observed and imaged. A challenge with any such candidate signature is to separate it from that of flare SEPs. The optimum case for imaging high-energy (E > 100 MeV) heliospheric protons may be the emission of π0-decay γ-rays following proton collisions with solar wind (SW) ions. In the case of E > 1 MeV electrons, gyrosynchrotron radio emission may be the most readily detectible remote signal. In both cases we may already have observed one or two such events. Another radiative signature from nonthermal particles may be resonant transition radiation, which has likely already been observed from solar flare electrons. We discuss energetic neutrons as another possible remote signature, but we rule out γ-ray line and 0.511 MeV positron annihilation emission as observable signatures of heliospheric energetic ions. We are already acquiring global signatures of large inner-heliospheric SW density features and of heliosheath interactions between the SW and interstellar neutral ions. By finding an appropriate observable signature of remote heliospheric SEPs, we could supplement the in situ observations with global maps of energetic SEP events to provide a comprehensive view of SEP events. 相似文献
16.
A. Damiani M. Storini C. Rafanelli P. Diego 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
The low background values at nighttime of the mesospheric hydroxyl (OH) radical make it easier to single out the atmospheric response to the external solar forcing in Polar Regions. Because of the short lifetime of HOx, it is possible to follow the trails of Solar Energetic Particle (SEP) events in the terrestrial atmosphere, as shown by Storini and Damiani (2008). The sensitivity of this indicator makes discernible not only extreme particle events with a flux peak of several thousand pfu [1 pfu = 1 particle/(cm2 s sr)] at energies >10 MeV, but also those with lower flux up to about 300 pfu. Using data from the Microwave Limb Sounder (MLS) on board the EOS AURA satellite, we examined the correlation of OH abundance vs. solar proton flux for almost all the identified SEP events spanning from November 2004 to December 2006 (later on no more SEP events occurred during Solar Cycle no. 23). The channels at energies greater than 5 MeV and 10 MeV showed the best correlation values (r ∼ 0.90–0.95) at altitudes around 65–75 km whereas, as expected, the most energetic channels were most highly correlated at lower altitudes. Therefore, it is reasonably possible to estimate the solar proton flux from values of mesospheric OH (and viceversa) and it could be useful in studying periods with gaps in the records of solar particles. 相似文献
17.
E. Echer W.D. Gonzalez A. Dal Lago L.E.A. Vieira F.L. Guarnieri A.L.C. Gonzalez N.J. Schuch 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,36(12):2313-2317
In this work a study is performed on the correlation between fast forward interplanetary shock parameters at 1 Astronomical Unit and sudden impulse (SI) amplitudes in the H-component of the geomagnetic field, for periods of solar activity maximum (year 2000) and minimum (year 1995–1996). Solar wind temperature, density and speed, and total magnetic field, were taken to calculate the static pressures (thermal and magnetic) both in the upstream and downstream sides of the shocks. The variations of the solar wind parameters and pressures were then correlated with SI amplitudes. The solar wind speed variations presented good correlations with sudden impulses, with correlation coefficients larger than 0.70 both in solar maximum and solar minimum, whereas the solar wind density presented very low correlation. The parameter better correlated with SI was the square root dynamic pressure variation, showing a larger correlation during solar maximum (r = 0.82) than during solar minimum (r = 0.77). The correlations of SI with square root thermal and magnetic pressure were smaller than with the dynamic pressure, but they also present a good correlation, with r > 0.70 during both solar maximum and minimum. Multiple linear correlation analysis of SI in terms of the three pressure terms have shown that 78% and 85% of the variance in SI during solar maximum and minimum, respectively, are explained by the three pressure variations. Average sudden impulse amplitude was 25 nT during solar maximum and 21 nT during solar minimum, while average square root dynamic pressure variation is 1.20 and 0.86 nPa1/2 during solar maximum and minimum, respectively. Thus on average, fast forward interplanetary shocks are 33% stronger during solar maximum than during solar minimum, and the magnetospheric SI response has amplitude 20% higher during solar maximum than during solar minimum. A comparison with theoretical predictions (Tsyganenko’s model corrected by Earth’s induced currents) of the coefficient of sudden impulse change with solar wind dynamic pressure variation showed excellent agreement, with values around 17 nT/nPa1/2. 相似文献
18.
E. Echer W.D. Gonzalez A. Dal Lago L.E.A. Vieira F.L. Guarnieri A.L.C. Gonzalez N.J. Schuch 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,36(12):2318-2322
Plasma and magnetic field parameter variations through fast forward interplanetary shocks were correlated with the peak geomagnetic activity index Dst in a period from 0 to 3 days after the shock, during solar maximum (2000) and solar minimum (1995–1996). Solar wind speed (V) and total magnetic field (Bt) were the parameters with higher correlations with peak Dst index. The correlation coefficients were higher during solar minimum (r2 = 56% for V and 39% for Bt) than during solar maximum (r2 = 15% for V and 12% for Bt). A statistical distribution of geomagnetic activity levels following interplanetary shocks was obtained. It was observed that during solar maximum, 36% and 28% of interplanetary shocks were followed by intense (Dst −100 nT) and moderate (−50 Dst < −100 nT) geomagnetic activity, whereas during solar minimum 13% and 33% of the shocks were followed by intense and moderate geomagnetic activity. It can be concluded that the upstream/downstream variations of V and Bt through the shocks were the parameters better correlated with geomagnetic activity level, and during solar maximum a higher relative number of interplanetary shocks can be followed by intense geomagnetic activity than during solar minimum. One can extrapolate, for forecasting goals, that during a whole solar cycle a shock has a probability of around 50% to be followed by intense/moderate geomagnetic activity. 相似文献
19.
太阳高能粒子事件常伴随太阳耀斑和日冕物质抛射事件(Coronal Mass Ejections,CME)出现,由于太阳高能粒子事件的关键因素是双CME的相互作用,利用SOHO卫星观测的高能粒子强度、耀斑强度以及CME的相对高度与时间,通过高度与时间拟合得到的速度,分析了2001年4月15日和2005年1月20日的太阳高能粒子事件强度与相关双CME事件的关系,发现这两个太阳高能粒子事件中E ≥ 10MeV质子的强度与双CME事件无关.因此在这两次太阳高能粒子事件早期,E ≥ 10MeV质子的强度只与相关太阳耀斑和CME有关. 相似文献
20.
R. Rodríguez-Gasén A. Aran B. Sanahuja C. Jacobs S. Poedts 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
The shape of flux profiles of gradual solar energetic particle (SEP) events depends on several not well-understood factors, such as the strength of the associated shock, the relative position of the observer in space with respect to the traveling shock, the existence of a background seed particle population, the interplanetary conditions for particle transport, as well as the particle energy. Here, we focus on two of these factors: the influence of the shock strength and the relative position of the observer. We performed a 3D simulation of the propagation of a coronal/interplanetary CME-driven shock in the framework of ideal MHD modeling. We analyze the passage of this shock by nine spacecraft located at ∼0.4 AU (Mercury’s orbit) and at different longitudes and latitudes. We study the evolution of the plasma conditions in the shock front region magnetically connected to each spacecraft, that is the region of the shock front scanned by the “cobpoint” (Heras et al., 1995), as the shock propagates away from the Sun. Particularly, we discuss the influence of the latitude of the observer on the injection rate of shock-accelerated particles and, hence, on the resulting proton flux profiles to be detected by each spacecraft. 相似文献