首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
芳基乙炔改性甲基苯基硅树脂的合成及性能   总被引:1,自引:0,他引:1  
用芳基乙炔改性甲基苯基硅树脂来提高硅树脂及其复合材料的耐热性能.通过红外光谱对其改性前后树脂的结构进行表征;并且测试了复合材料界面剪切强度、弯曲强度和层间剪切强度.测试结果显示,改性后复合材料在室温及200 ℃下的界面剪切强度分别提高了3 MPa和8 MPa;室温下的弯曲强度提高到349.72 MPa,500 ℃烧蚀30 min后复合材料弯曲强度为301.01 MPa;室温下的层间剪切强度为25.21 MPa,经500 ℃烧蚀30 min后降至17.43 MPa,这些性能均高于相应条件下甲基苯基硅树脂复合材料.以上结果表明,芳基乙炔的引入提高了甲基苯基硅树脂的耐热性、界面性能及玻璃纤维复合材料的力学性能.  相似文献   

2.
采用"化学气相渗透法 聚合物先驱体浸渍裂解法"(CVI PIP)混合工艺制备出连续炭纤维增强碳化硅陶瓷复合材料(3D C/SiC)推力室,综合考察了复合材料的机械性能、微观结构和气密性能,以及姿控、轨控发动机环境试验考核.结果表明,"CVI PIP"混合工艺制备C/SiC复合材料不仅工艺周期缩短,而且材料性能优异.复合材料密度达2.1 g/cm3,室温弯曲强度和断裂韧性(KIC)分别达到520 MPa和17.9 MPa·m1/2;而且断裂破坏行为呈现典型的韧性模式.C/SiC复合材料推力室的高温气密性、抗氧化和抗烧蚀性能通过了双燃料液体发动机试验考核.  相似文献   

3.
预制体及基体对C/C复合材料性能的影响   总被引:1,自引:0,他引:1  
研究了预制体结构及其成型工艺和基体类型对C/C复合材料的力学性能、烧蚀性能和微观结构的影响。结果表明,它们对C/C复合材料的拉伸和压缩强度影响不显著,而对剪切性能影响明显。采用CVD成型工艺和树脂炭基体,对于二维预制体,C/C复合材料的剪切强度可达19MPa;对于准三维预制体,C/C复合材料层间剪切强度可达20MPa。不同类型的基体炭对复合材料的耐烧蚀性影响不同,CVD炭具有优异的抗烧蚀性能,树脂炭与沥青炭的抗烧蚀性能较差。采用先沉积后树脂浸渍炭化补充增密,可制备综合性能优异的热结构复合材料。  相似文献   

4.
采用反应熔渗工艺(RMI)快速制备了不同碳化硅含量的C/C-SiC复合材料,通过氧-乙炔烧蚀试验,测试了材料的烧蚀性能。利用SEM/EDS表征了复合材料烧蚀后的表面形貌和成分,分析了碳化硅含量对复合材料烧蚀性能的影响。结果表明,随着基体中碳化硅含量的提高,烧蚀过程中生成的二氧化硅保护膜更加致密,导致C/C-SiC复合材料的烧蚀率逐渐降低。在此基础上,利用优化工艺制备了密度均匀的大尺寸C/C-SiC构件,经过地面热试车考核,构件接近零烧蚀,满足发动机热试车的应用。  相似文献   

5.
以葡萄糖作为碳源,硅溶胶作为硅源,氧氯化锆作为锆源,采用水热共沉积-碳热还原法制备了C/C-ZrC-SiC复合材料,研究了材料的烧结温度对C/C-ZrC-SiC复合材料的微观形貌、力学性能和耐烧蚀性能的影响。结果表明,烧结温度对水热共沉积制备C/C-ZrC-SiC复合材料的性能影响显著。水热共沉积制备的C/C-ZrO_2-SiO_2陶瓷在1600℃下烧结,可获得C/C-ZrC-SiC复合材料,ZrC和SiC陶瓷相颗粒粒径约为500 nm,在基体中均匀分布。1600℃烧结的C/C-ZrC-SiC复合材料表现出最佳的力学性能和抗烧蚀性能,其最大弯曲强度为173.8 MPa,质量烧蚀率和线烧蚀率分别为1.28×10~(-4)g/(cm~2·s)和1.67μm/s。过高的烧结温度导致晶粒粗大、孔隙缺陷增多,使得复合材料力学性能恶化、抗烧蚀性能大幅降低。  相似文献   

6.
以降低传统碳/酚醛复合材料密度为目的,在对复合材料密度进行理论分析计算的基础上,采用在酚醛树脂中添加轻质填料的方法制备低密度碳/酚醛复合材料,按照正交实验法对轻质填料含量以及复合材料制备工艺参数进行分析与优化。结果表明,分别采用聚丙烯腈基碳纤维和粘胶基碳纤维作为增强材料,研制的碳/酚醛复合材料的密度分别为1.339 g/cm~3和1.211 g/cm~3,拉伸强度分别为294 MPa和131 MPa,剪切强度分别为15.0 MPa和14.7 MPa,室温热导率分别为0.215 W/(m·K)和0.476 W/(m·K),200℃热导率分别为0.340 W/(m·K)和0.599 W/(m·K),氧乙炔线烧蚀率分别为0.011 mm/s和0.030 mm/s,复合材料密度降低的同时,其他性能满足固体火箭发动机喷管烧蚀防热材料的使用要求。  相似文献   

7.
采用交联剂对聚碳硅烷(PCS)先驱体进行改性,以改性先驱体配置溶液制备了C/SiC复合材料。在制备过程中,由于改性先驱体较高的陶瓷产率,缩短了复合材料基体致密化周期,气孔率降低到7.2%,密度提升到2.01 g/m~3。在改善试样显微结构的同时,改性先驱体能够明显提升C/SiC复合材料力学性能,弯曲强度提高到459.4 MPa,断裂韧性提升到13.6MPa·m~(1/2),相比单组分PCS先驱体分别提高了51.9%和32.0%。烧蚀性能考核表明,试样的线烧蚀率和质量烧蚀率分别为8.3×10~(-3) mm/s和4.3×10~(-3) g/s,相比单组分PCS制备的试样分别降低了85.7%和73.1%。通过对试样内部显微结构和考核后形貌进行分析,结果表明试样力学和烧蚀性能的提升主要得益于致密化的基体以及基体对纤维很好的保护作用。  相似文献   

8.
为解决传统溶胶制备的碳纤维增强莫来石复合材料致密化效率低、制备周期长、性能不理想等缺陷,以碳纤维布叠层缝合预制件为增强体,以符合莫来石化学计量比的Al2O3-SiO2溶胶为原料,通过浸渍-干燥-热处理技术路线制备C/Mullite复合材料。研究了Al2O3-SiO2溶胶的烧结收缩与莫来石化行为,对复合材料工艺进行了初步优化,表征了氧乙炔焰烧蚀性能。所用Al2O3-SiO2溶胶的固含量30.7%,陶瓷产率18.3%,经1 300℃热处理后,莫来石化基本完成,且表现出明显的烧结收缩。形成了能避免碳纤维布分层开裂的复合工艺路线。获得了四点弯曲强度和断裂韧性分别为210.6 MPa,11.2 MPa·m1/2的C/Mullite复合材料。在氧乙炔焰烧蚀中,莫来石基体分解生成Al2O3和SiO2,在热流和机械冲刷作用下,大量SiO2流失,复合材料的质量烧蚀率和线烧蚀率分别为0.049g/s,0.12mm/s。  相似文献   

9.
针对防热层与天线盖板的热匹配及烧蚀匹配开展研究,通过有限元方法,分析了尺寸效应对于天线盖板热匹配的影响,同时结合电弧风洞实验验证了防热层与天线盖板在高温下的烧蚀匹配行为。研究结果表明,按照实验件尺寸20 mm×20 mm,在实验环境条件下,防热层最大热应力为2.98 MPa,小于低密度石英酚醛复合材料在高温下的拉伸强度,不存在热匹配风险。当天线盖板尺寸大于60 mm时,防热层局部接触应力约为5.3 MPa,大于防热层在高温下的抗拉强度,天线盖板与周边防热层保证0.3 mm安装间隙,天线盖板在高温下的最大膨胀量为0.03~0.04 mm,远小于间隙值,因此不存在热匹配风险。天线盖板在与防热层烧蚀过程中,由于耐温较高,在高温下基本无烧蚀,低密度石英酚醛防热层烧蚀量约为 1.1 mm,因此在后续防热设计中可在天线盖板前缘处预留台阶,以减小高温下的烧蚀不匹配风险。  相似文献   

10.
由于高性能推进剂的广泛应用,导致固体火箭发动机燃烧室内的燃烧温度与工作压强不断升高,因此研制出性能更加优异的隔热层迫在眉睫。以三元乙丙橡胶(EPDM)为基体,气相纳米Si O2为补强填料,首次引入八甲基丙烯酰氧基丙基POSS(MA-POSS),经由过氧化物引发双键之间的自由基聚合反应,制备了POSS改性EPDM耐烧蚀复合材料。研究了MA-POSS与气相纳米Si O2的添加量对隔热材料的交联度、力学性能、热稳定性、耐烧蚀性能的影响。在POSS与气相纳米Si O2协同作用下,改性后的材料各项性能均有所提升。结果表明,当气相纳米Si O2含量为40份、MA-POSS为5份时,凝胶含量高达92.61%,拉伸强度为12.02 MPa; MA-POSS含量为3份时,复合材料的线性烧蚀率和质量烧蚀率最低,分别为0.296 mm/s和0.100 g/s。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号