首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
聚碳硅烷纤维的不熔化处理研究(Ⅱ)—放大工艺的研究   总被引:1,自引:1,他引:0  
采用熔融纺丝法纺出连续PCS纤维束,研究了升温制度、纤维装填量以及过热现象等因素对PCS纤维不熔化结果的影响,探讨了不熔化工艺的优化。结果表明,低温段慢速升温,中温段延长保温时间,高温段进一步强化的升温制度是比较合理的。纤维装填质量及密度增大到一定程度后,会因散热不利而引起急剧高温,导致纤维的熔并。急剧放热引起纤维结构的变化较大,而且内部纤维与表层纤维的反应程度不同。  相似文献   

2.
利用TG-DTA和动力学计算方法对聚碳硅烷纤维在空气中的反应过程进行了研究,探讨了不熔化工艺条件对纤维增重及其不熔化程度的影响。结果表明,PCS纤维的氧化反应不是简单的一级反应,随着升温速率的加快,反应急剧放热,并引起进一步的化学反应,导致反应机理发生改变。升高温度或延长时间均有利于纤维的不熔化。  相似文献   

3.
C形、中空截面碳化硅纤维的成形工艺研究   总被引:4,自引:0,他引:4       下载免费PDF全文
以聚碳硅烷(PCS)为原料,经C形喷丝板熔融纺丝制备C形、中空截面PCS原丝后,再经不熔化和高温烧成后得到C形、中空截面SiC纤维。文中讨论了纺丝温度、N2压力和收丝速度对两种PCS纤维当量直径和异形度的影响,以及不熔化和烧成工艺对SiC纤维截面形状的影响。结果表明,纺丝温度对C形、中空PCS纤维当量直径和异形度影响较大;合适的纺丝工艺和不熔化及烧成条件下可以得到高异形度低当量直径的C形、中空截面SiC纤维。  相似文献   

4.
聚碳硅烷PC—P是制备力学性能优异的低电阻率碳化硅纤维的先驱体。利用IR、TG、凝胶含量分析等手段研究了聚碳硅烷PC—P不熔化纤维的热解过程。研究表明,聚碳硅烷PC—P不熔化纤维高温热解过程与PCS不熔化纤维类似,但在300℃左右存在明显的自交联现象,使PC—P不熔化纤维的凝胶含量迅速增加,这是PC—P纤维在不熔化程度较低情况下能够通过高温烧成的原因。  相似文献   

5.
对PCS纤维空气氧化反应过程中产生的尾气进行了色谱分析 ,并对氧化后的纤维进行了红外分析 ,在此基础上推测了不熔化机理 ;采用XPS分析技术考察了氧在PCS纤维中的分布。结果表明 ,PCS纤维氧化反应过程中有少量氢气生成 ,出现局部过热时伴随有CO2 生成 ;氧在不熔化PCS纤维中由表及里呈梯度分布 ,低温、长时的不熔化处理条件有利于氧在纤维中的扩散和均匀分布  相似文献   

6.
对PCS纤维空气氧化反应过程中产生的尾气进行了色谱分析,并对氧化后的纤维进行了红外分析,在此基础上推测了不熔化机理;采用XPS分析技术考虑了氧在PCS纤维中的分布,结果表明,PCS纤维氧化反应过程中有少量氢气生成,出现局部过热时伴随有CO2生成;氧在不溶化PCS纤维中由表及里呈梯度分布,低温,长时的不溶化处理条件有利于氧在纤维中的扩散和均匀分布。  相似文献   

7.
利用TG-DTA和动力学计算方法对聚碳硅烷纤维在空气中的反应过程进行了研究,探讨了不熔化工艺条件对纤维增重及其不熔化程度的影响。  相似文献   

8.
结构吸波材料SiC—C纤维的研究   总被引:6,自引:2,他引:6  
本文用聚碳硅烷(PCS)与煤沥青(P)共混,制得PCS-P共混物,经纺丝、氧化、高温烧成,制得了SiC-C纤维,其电阻率随碳含量的增加而减小,强度和模量随碳含量的增高而降低,用该纤维与环氧树脂复合制得的层合板材,具有良好的吸收电磁波性能。  相似文献   

9.
卢玲 《宇航材料工艺》1997,27(3):32-35,55
研究了用三氯化硼对聚硅氮烷纤维进行了不熔化处理的过程,讨论了处理条件对不熔化反应的影响,并对不溶化过程的反机理进行了分析探讨。  相似文献   

10.
电阻率可调的含钛碳化硅纤维的制备与性能研究   总被引:3,自引:1,他引:3  
以Ti(OBu)4与低分子量聚硅烷(LPS)为原料合成不同含钛量的聚钛碳硅烷,经熔融纺丝、空气不熔化、高温烧结制备出力学性能良好、电阻率为103~10Ω·cm的Si—Ti—C—O纤维。通过IR、GPC、VPO、XPS等分析手段系统研究了钛含量对纤维的制备、结构及其电性能的影响。  相似文献   

11.
用日本纺丝法制得的碳化硅纤维和国产纯铝箔为原料,采用真空液相压渗法制成单向增强的、纤维体积分数为17%和32%的SiC-Al复合材料。研究了这种复合材料在空气中的高温拉伸强度和高温暴露后的拉伸强度。复合材料的高温拉伸强度可保持到400℃。在500℃时才显著下降。460℃高温暴露直到100h,其强度不下降。 SiC-Al复合材料在500℃强度下降的原因可能是由于纤维与基体界面结合力降低引起载荷传递效率减少所致。高温暴露100h后强度下降可能是由于碳化硅纤维强度降低、基体晶粒粗化和纤维基体间界面结合减弱所致。  相似文献   

12.
何凯乐  余永刚 《推进技术》2023,(10):236-246
为了有效提高火箭、导弹武器在高温环境下的热安全性,增强其战场生存能力,基于AP基推进剂的烤燃反应机理,建立了装填星形孔高氯酸铵/端羟基聚醚(AP/HTPE)复合固体推进剂的三维非稳态固体火箭发动机烤燃模型。针对慢速和快速两种不同的热载荷条件,分别采用3.6~10.8K/h的慢烤升温速率和1.45~1.95K/s的快速烤燃升温速率对固体火箭发动机进行多工况的烤燃数值模拟。结果表明:发动机着火延迟时间和升温速率呈负相关趋势。升温速率的变化对发动机着火温度无显著影响。在快速烤燃条件下,升温速率的不同使得发动机着火位置出现跳跃性变化。  相似文献   

13.
陶瓷基复合材料具有高强高模、高温抗氧化和耐化学稳定性等特点,是新一代先进复合材料的研究热点之一。介绍了以聚碳硅烷不熔化纤维为原料制备碳化硅纤维毡的方法和陶瓷基复合材料的制备工艺;阐述了陶瓷基复合材料的性能测试方法,并分析了气孔率对陶瓷基复合材料力学性能的影响。  相似文献   

14.
聚铝碳硅烷(PACS)纤维预氧化过程是制备近化学计量比Si C(Al)纤维的关键步骤。而连续PACS纤维预氧化的氧含量控制是关键问题。采用实时测量设备对连续PACS纤维预氧化过程进行跟踪,用分段积分方法对PACS纤维进行非等温动力学模拟;利用实时测量数据用非线性优化方法求解,可以预测PACS纤维预氧化增重。本文在实验过程中,采用聚碳硅烷(PCS)纤维和PACS纤维进行对比研究。结果表明:在相同的预氧化条件下,两种纤维均在Si—H键反应程度为40%时出现凝胶点,反应后凝胶含量均达到100%,其氧含量分别为9.9wt%和14.7wt%;PACS纤维的Si—H键反应程度和增重均比PCS纤维低。利用实时增重数据,用Matlab的Lsqnonlin函数进行求解预氧化动力学方程,得到PACS的预氧化活化能为62.2 k J/mol,模型可准确的预测其预氧化过程中的增重率变化。  相似文献   

15.
卢玲  冯春祥 《宇航材料工艺》1995,25(6):10-15,27
综合叙述了国外近年来在高耐热性SiC、Si3N4纤维方面的研究进展。通过改进不熔化处理方法,可以降低纤维中的氧含量,并显著提高的性能;而在纤维制造过程中的先驱体合成或不熔化处理等阶段引入导无素,如硼,已制得高强高模,耐高温的SiC、Si3N4陶瓷纤维。  相似文献   

16.
前言石英玻璃具有比重小、热传导系数小、热膨胀系数小、介电常数小而且稳定的特性(见表1)。石英玻璃开始熔化的温度不很高,但是,由于它具有很高的粘度,高温下,石英玻璃开始熔化,出现具有很高粘性的并赖以能在玻璃表面保持住的液体,形成  相似文献   

17.
研究了聚碳硅烷(PCS)纤维γ-ray辐射交联的不熔化效果,利用IR、TG分析了交联机理,结果表明,PCS纤维在空气、N2、He气氛下辐射13.8MGy时均已实现熔化,三者中以空气气氛下交联程度最高,N2、He气氛下辐照的PCS纤维的氧含量较低,在N2、He气氛下,Si-H及部分Si-CH3辐照产生自由基交联,形成了Si-CH2-Si的桥联结构,而在空气气氛下,氧参与交联还形成了Si-O-Si的桥连结构。  相似文献   

18.
为了让ITS90温标能够更好地向高温方向传播,利用金属-碳共晶点作为传递标准,其测量结果的不确定度得到了很好的提高,因此,金属-碳共晶点熔化温坪温度的确定就显得尤为重要。本文从转折点熔化温度的定义出发,利用移动平均法,选取二阶差分曲线过零点的值作为熔化温坪温度。本方法避开了人为因素造成的B类不确定度,同时可以消除噪声带来的影响。  相似文献   

19.
本文结合实验数据,从理论上估计了挤压铸造CF/Al复合材料的压力和温度范围,并研究了它们与性能的关系。结果表明:纤维的预处理可改善纤维在基体中的分布;压力和温度与复合材料性能关系重大;它们都存在最佳范围,纤维预处理不同,复合材料所需的在参数各异,复合材料的 性能也不同,其中以纤维表面涂覆PCS-SiC效果最好。  相似文献   

20.
Cf/SiC复合材料先驱体转化法浸渍工艺条件优化   总被引:6,自引:1,他引:6       下载免费PDF全文
主要研究了先驱体转化法制备碳纤维三维编织物增强陶瓷基复合材料的浸渍工艺条件,探讨了不同温度,压力对PCS/DVB溶液法和PCS熔融法浸渍效率的影响,优化出最佳浸渍工艺参数。结果表明,温度对PCS/DVB溶液粘度影响较大,升高温度可急剧降低PCS/DVB溶液的粘度,有利于浸渍。PCS/DVB溶液法浸渍的最佳工艺参数为:50-60度,2MPa,PCS熔融法浸渍的最佳工艺参数为:300度,2MPa,采用PCS/DVB溶液法浸渍时的浸渍效率优于PCS熔融法,经四个浸渍裂解周期后溶液法制备的材料密度(1.53g/cm3-1.61g/cm3)明显优于先驱体熔融法(1.43g/cm3-1.52g/cm3)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号