首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
霍尔推力器阳极加热机制及设计优化   总被引:1,自引:1,他引:0       下载免费PDF全文
张旭  魏鑫  刘敏  吕红剑  于达仁 《推进技术》2019,40(3):699-706
阳极的过热不仅降低霍尔推力器的放电稳定性和推力效率,同时也是推力器的一种失效原因,直接引起推力器放电电流、功率异常增加导致关机故障。为在设计阶段解决阳极过热失效问题,本文通过理论分析建立了阳极热过程模型,分析得到阳极鞘层的形成是影响阳极热功率的核心过程,而阳极电流密度和磁感应强度是影响鞘层特性的关键参数。研究结果表明,阳极鞘层电势差随阳极电流密度的提高而增大,在典型近阳极区等离子体参数下,阳极电流密度小于600A/m2时,阳极负鞘层形成;而阳极热功率随着近阳极区磁感应强度的增加而升高,将阳极位置设计在零磁场区是最有利于降低阳极热功率的设计。  相似文献   

2.
赵杰  唐德礼  李平川  许丽  张帆 《推进技术》2020,41(6):1428-1433
为研究圆柱形阳极层霍尔推力器内轮辐效应的不稳定性,利用高速相机和静电探针得到1-2-1模式、1-2-3-1模式和1-2-3-2-1模式的轮辐分裂与合并现象。随着磁感应强度由205Gs增加到225Gs,轮辐个数m由1增加到3。轮辐的分裂与合并模式增多,且轮辐的旋转频率随之由25kHz提高到40kHz~50kHz。轮辐效应的存在是电子密度分布函数的宏观体现,动理论方程中力F的波动引起了轮辐的分裂,随着轮辐个数m的增加,电子分布的低频大幅度波动逐渐演变为小幅度高频率的波动。电子密度分布函数的波动引起的轮辐效应产生了角向分布的电场强度与磁场共同作用,增强了电子轴向漂移运动。  相似文献   

3.
为了提出降低阳极层霍尔推进器运行过程中的磁极刻蚀程度的方案,记录磁极刻蚀程度在相关参数影响下的变化,针对阳极层霍尔推进器的放电电流、电压、工质输送速率等工作参数开展实验研究,定量分析了这些影响因子对推进器磁极刻蚀程度的影响。通过测量磁极被溅射出的粒子在样品表面不同位置上的沉积速率,计算出了推进器在不同运行条件下,由于磁极刻蚀而产生的溅射粒子数量和密度。实验结果表明,该推进器在运行过程中,溅射粒子主要集中在羽流中心线附近区域;随着放电电压和电流的增加,溅射粒子的密度显著上升,并且在以羽流中心线为中心,半径为4cm的圆面区域内,溅射粒子密度上升明显;降低工质输送速率,在低气压、高电压和小电流的运行条件下能够有效降低推进器磁极刻蚀程度,实验所采用的霍尔推进器合适的工作气压为0.02~0.025Pa。  相似文献   

4.
圆柱形阳极层霍尔推力器内轮辐效应的实验研究   总被引:2,自引:2,他引:0       下载免费PDF全文
《推进技术》2019,40(7):1676-1680
为了研究圆柱形阳极层霍尔推力器内关于电子反常输运的轮辐效应(Rotating Spoke),分别采用高速相机和静电探针来捕捉圆柱形阳极层霍尔推力器内的轮辐效应图像和等离子体震荡频率。结果表明:在放电电压350V,放电电流3.5A,阳极上表面处的磁场强度为125Gs,工作气压为2×10-2Pa时,由测得轮辐效应的放电图像和波形可知,轮辐效应的频率为10kHz~12.5kHz。当磁场强度增加到205Gs,放电电流增加到4A时,轮辐效应的频率增加到25kHz,并且轮辐效应出现分裂和合并现象。此研究结果表明,圆柱形阳极层霍尔推力器内不仅存在轮辐效应现象以及角向电场,而且不同的工作参数会有不同的轮辐效应模式和频率。  相似文献   

5.
磁极腐蚀问题成为磁屏蔽霍尔推力器的主要寿命失效模式。为了研究磁极腐蚀的机理,本文基于粒子网格方法建立推力器放电的数值仿真模型,结合溅射模型模拟磁极腐蚀现象,统计磁极表面收集的入射离子运动状态,获取磁极腐蚀特性,据此探究磁极腐蚀的机理以及影响磁极腐蚀速率的因素。结果表明:磁屏蔽霍尔推力器出口倒角附近形成的高原子密度区同时也是径向电场占主导的区域,在此处电离产生的低速离子易于径向发散进而偏转向磁极方向运动。磁极表面腐蚀现象呈现径向分布不均的特点,内磁极附近轴对称电场对离子的作用是导致磁极中心腐蚀速率远高于其他位置的主要原因。  相似文献   

6.
高压脉冲圆柱形阳极层霍尔等离子体加速器实验   总被引:1,自引:1,他引:0  
描述了一台大尺寸高压脉冲阳极层霍尔等离子体加速器。对其磁场分布进行了分析,并进行了初步实验,包括放电特征、离子流引出特征、离子束形貌等特性,以验证大尺寸的圆柱形阳极层霍尔等离子体加速器在高功率条件下的运行状况。实验发现此霍尔等离子体加速器工作稳定,可以在较高的功率上运行(大于3kW),电流利用率较高,可超出90%,工作电压范围很宽,可在300~2kV工作,束流汇聚性良好。  相似文献   

7.
本文从阳极层霍尔推力器的技术特点出发,分析了单级和双级阳极层霍尔推力器在结构和性能上的差异;梳理国内外阳极层霍尔推力器的研究现状,结合未来大载荷空间任务的动力需求指出阳极层霍尔推力器未来的发展趋势;最后,提出了阳极层霍尔推力器在研制中的主要技术问题,主要包括电离与加速独立控制、放电模式与模式跳变、推力器工作模式的多样化、高电压强磁场设计、小间隙高压绝缘问题、高电压热设计以及放电室溅射削蚀等,分析了技术难点并给出解决思路。  相似文献   

8.
李鸿  吴优  张兴浩  韩亮  于达仁 《推进技术》2018,39(1):231-240
为研究磁路高温性质变化对霍尔推力器放电热失稳的贡献及影响机理,对不同磁路温度下推力器的工作磁场强度开展了实验测量,对磁路温度变化与通道内等离子体放电行为变化的交互影响开展了Particle-in-Cell数值模拟研究。实验结果表明,当磁路温度由室温升高到600℃时,推力器的工作磁场强度发生了衰减,尽管衰减量不大(约5%)。模拟结果表明,磁路高温引起的场强衰减改变了推力器放电时的电导率及电势分布,进而对电子能量各向分布、粒子密度分布等造成了影响,促进了电子在壁面的通量及能量损失,主导了壁面等离子体沉积功率的增加,从而进一步加剧了磁路温度的增长。这是一个具有正反馈性质的过程;因此,若不能通过外部手段有效控制磁路温度,将诱发霍尔推力器的放电热失稳。  相似文献   

9.
基于PIC/MCC/DSMC方法霍尔推力器热分析   总被引:1,自引:2,他引:1       下载免费PDF全文
严立  王平阳  欧阳华 《推进技术》2015,36(6):953-959
以提高霍尔推力器性能和使用寿命为目的对霍尔推力器进行了热分析。建立了等离子体在通道陶瓷壁面和阳极的能量沉积计算模型,并将模型耦合到PIC/MCC/DSMC流场计算程序中,计算加速通道壁面上的能量沉积分布。将计算得到的壁面能量沉积作为霍尔推力器温度计算的热流边界条件,考虑结构间的热传导与热辐射,计算温度分布。为了考察壁面的热流分布方式不同对温度场的影响,在总热流相同的情况下,将通道热流假定为线性分布与平均分布,计算霍尔推力器的温度分布。结果表明,壁面能量沉积占总功率的20.4%,陶瓷壁面能量沉积沿轴向位置先增大后减小,最大值在电离区。阳极的能量沉积,沿径向在中间位置达到最大,两端靠近壁面处较小。三种热流边界条件下的温度结果表明,三者最高温度都为700K左右,但高温位置不同,PIC热流边界条件下,最高温在电离区,而线性与平均热流边界条件下,高温区分别在出口区与近阳极区。通过与实验结果比较表明,PIC计算热流边界条件下高温区温度与测量者吻合更好,误差小于0.8%。  相似文献   

10.
霍尔推力器通道宽度对电离特性的影响   总被引:1,自引:1,他引:0  
李杰  宁中喜  于达仁  李勇 《推进技术》2011,32(6):806-812,863
为了研究霍尔推力器通道宽度对电离特性的影响,采用以数值模拟为主、实验验证为辅两种手段相结合的方式。所建立的数学模型是基于蒙特卡洛方法的二维完全动力学粒子模型,实验选择了与等离子体无接触的光谱诊断方法。计算和实验两方面的结果都发现随着宽度的增加,电子电离工质气体的速率增加,电离更加有效,而且电离区域变得集中的规律。通过进一步的计算发现,电离特性的明显差异和电子与壁面碰撞频率随宽度增加而减小,电子温度随之升高有着密切关系。电子温度升高一方面会对电离特性起到促进作用,另一方面也会使电离消耗的能量增加。由于稳态时的电子温度是由电子能量平衡机制决定的,因此对电子能量平衡方程进行深入分析之后发现,在研究通道宽度影响电离特性这一物理问题上,电子在壁面上的能量损失是决定电子温度的主导因素,而电离损失仅属于次要因素,宽度增加有利于改善推力器的电离特性。  相似文献   

11.
磁场位形和通道尺度会改变霍尔推力器等离子体放电过程,影响推力器的宏观放电特性.为分析磁场和通道宽度对推力器放电性能的影响规律,针对霍尔推力器轴对称通道结构和放电物理过程建立了2D3V物理模型,采用粒子模拟方法研究了霍尔推力器磁零点磁场位形不同通道宽度的电势、粒子数密度、电子温度、电离速率、比冲及推功比的变化规律.结果表...  相似文献   

12.
磁场强度及位形对霍尔推力器放电过程有显著影响。根据霍尔推力器通道尺寸和等离子体放电过程建立二维物理模型,采用粒子模拟方法,研究了不同磁场强度及位形等离子体放电特性,讨论了推力、推功比及放电电流的变化规律。模拟表明:当中轴线磁场强度峰值小于200G时,磁场对电子轴向传导约束减弱;当磁场强度峰值在200G~420G时,电子温度、电离率及电子与壁面碰撞频率降低,出口处离子径向速度增大,壁面腐蚀增加;当磁场强度峰值为280G时,加速区最短,放电电流最小。不同零磁点磁场位形会改变通道电离区和加速区位置,影响推力器放电性能。  相似文献   

13.
胡竟  蒋成保  张天平  高俊  赵勇  张文涛 《推进技术》2019,40(12):2874-2880
磁场是评价星载霍尔推力器性能水平及工作特性的重要因素,也是开展推力器优化设计的重要自由度。针对航天器姿态调整等空间轨道任务对霍尔推力器应用需求,分析了影响永磁霍尔推力器磁感应强度的关键因素。在此基础上,利用磁路等效法,采用有限元离散形式,建立了基于永磁材料的霍尔推力器磁场模型,利用国外同类产品工程数据验证了磁场模型分析方法的可行性和计算结果的正确性,最终获得了设计所需的推力器磁路构型、永磁体结构尺寸及相应的永磁霍尔推力器样机。将永磁霍尔推力器磁场分析结果与实测结果进行对比,并对整机性能进行了实验验证,结果表明:推力器性能实验结果与设计要求相符性较好,额定供气、供电状态下,推力器阳极电流符合设计要求,整机推力达到3.52mN,比冲达到685s,较好地实现了永磁霍尔推力器设计目标。  相似文献   

14.
韩轲  汪颖  鲁海峰 《推进技术》2020,41(6):1434-1440
基于霍尔推力器一维准中性流体模型,对放电壁面侵蚀对低频振荡特性的影响进行了数值模拟研究。通过改变霍尔推力器放电通道的横截面积,研究了霍尔推力器寿命期内通道受离子溅射后,放电电流振荡特性变化。研究结果显示,横截面积从25cm2增大到37cm2时,放电电流振荡幅值增加,振荡频率基本不变;继续增加横截面积,放电电流振荡幅值减小,振荡频率增加。理论分析表明:通道侵蚀面积增大,导致离子碰撞频率变化,进而引起振荡特性变化。  相似文献   

15.
微波霍尔推力器是双极霍尔推力器的一种形式,其电离源中的圆柱谐振腔是一个关键件,它承担着微波能量的传输并激发表面波等离子体的重要作用。正确选择其结构和谐振模态是构建微波霍尔推力器的重要基础。为此,针对不同结构、不同谐振模态的微波谐振腔进行结构参数计算分析和电磁场分布规律数值模拟,从中选取可以和霍尔推力器SPT70加速通道相匹配的腔体结构。计算分析和数值模拟结果表明2.45GHz谐振于TM011模的圆柱谐振腔和SPT70加速通道有合适的匹配关系。  相似文献   

16.
为了实现多模式离子推力器在宽功率范围内最优性能和可靠性,基于30cm多模式离子推力器通过实验开展了阴极和中和器羽状模式转变点流率、放电电压30V对应阴极流率和放电损耗曲线与束电流关系研究。30cm多模式离子推力器束电流从0.3A增加到3.3A时,阴极羽状模式转变点流率值从0.017mg/s增加到0.163mg/s,放电电压30V对应阴极流率从0.129mg/s增加到0.231mg/s,中和器羽状模式转变点流率从0.030mg/s增加到0.191mg/s。随放电室工质利用率的增加,在小束电流下放电损耗迅速增加;当束电流大于1.5A时,放电损耗对放电室工质利用率的变化较为迟钝。基于上述流率特性实验结果完成了30cm多模式离子推力器宽功率范围35个工作点下最佳流率设计。在设计的工作流率下,放电电压小于30V,阴极和中和器均工作在点状模式,实测推力为9.6mN~185.2mN、比冲为1332s~3568s、功率为258W~4761W。  相似文献   

17.
为了对不同环境温度造成的30cm离子推力器三栅极组件离子刻蚀速率的影响进行分析,采用有限元仿真与试验验证相结合的方法,计算并试验验证了不同环境温度下的三栅极组件热平衡温度以及栅极间的相对位移变化,采用流体方法模拟了不同环境温度(20℃,-70℃,-120℃和-170℃)对三栅极组件的刻蚀影响,并结合短期寿命试验结果进行验证。结果显示:随着环境温度的降低,屏栅达到温度平衡的时间无变化,而加速栅温度平衡所需的时间则明显延长,20℃下的屏栅和加速栅热仿真结果与室温下推力器热平衡试验结果比对误差分别为7%和5%;其次环境温度的降低,会导致屏栅与加速栅的中心间距和边缘间距均缩小,而加速栅和减速栅的边缘间距却逐渐拉大,仿真结果与栅极热间距摄像测量结果符合性较好;根据三栅极组件的栅孔径扩大率随环境温度变化的计算结果来看,加速栅中心和减速栅边缘是离子刻蚀的主要位置,轰击至加速栅中心区域的离子数速率约是边缘的3倍,而轰击至减速栅边缘区域的离子数速率是中心的2.5倍,且环境温度的降低对加速栅中心区域离子刻蚀的影响更为强烈;经2100h的寿命试验验证,仿真结果与试验结果基本符合,误差经分析认为主要来自于流体方法的参数设置过程以及栅孔壁面均匀刻蚀的计算假设。  相似文献   

18.
为深入分析霍尔推力器放电通道的非麦氏电子分布对等离子体与壁面相互作用的影响,采用一维非稳态鞘层动力学模型,统计了等离子体与壁面相互作用的重要物理量。结果表明,非麦氏电子分布函数和麦氏电子分布函数下等离子体与壁面相互作用存在很大差异,电子服从非麦氏电子分布时入射电子在壁面上的能量沉积,以及二次电子对主流区电子的冷却作用都明显弱于电子服从麦氏分布的情形。  相似文献   

19.
为了研究5kW离子推力器功率宽范围工作能力,采用试验的方法得到阳极电流和屏栅电压与其性能的影响关系。研究结果表明:离子束流随阳极电流增大呈线性增大。当屏栅电压增加时,推力器离子束流先增加然后趋于稳定,加速栅电流单调减小。推力随功率增大呈线性增长,比冲随功率的增大呈非线性增长,在功率308W~4813W下实现了推力12mN~184mN,比冲1817s~3538s, 效率34%~67%的宽范围调节。同时推力器效率随功率增大逐渐增大,并在2902W时存在明显拐点,在实际在轨应用中要根据任务需求确定最佳工作区间提高推力器性能和效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号