首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
姿态     
张学孚 《航空学报》1995,16(5):632-635
分析了飞机航向( 姿态) 系统的弊病: 结构复杂、配套困难、可靠性差、造价高, 精度却 难以再提高; 提出了采用“计算机+ 传感器”的系统结构模式。该方案的优点是取消了伺服机构 等配套硬件, 由软件实现伺服、滤波功能, 并能精确修正各种误差。  相似文献   

2.
贾庆轩  段嘉琪  陈钢 《航空学报》2021,42(6):424063-424063
针对在轨装配过程中机器人"手眼"关系无法进行有效标定及机器人系统和被操作物惯性参数不定的情况,在传统的无标定视觉伺服基础上设计了深度估计器,基于机器人和图像运动的测量数据在线估计目标特征的深度值,并在机器人关节控制环中设计滑模控制器实时控制机器人关节运动,根据反馈图像信息纠正系统误差完成对准跟踪,通过仿真验证了方法的有效性。所提的无标定视觉伺服对准方法使机器人在装配过程中免去了复杂的"手眼"关系的标定程序,克服了机器人系统及被操作物惯性参数不确定性给装配精度造成的影响,提高了"手眼协调"的鲁棒性,保证机器人能够在复杂的太空环境下完成在轨装配任务。  相似文献   

3.
孙德志 《航空学报》1985,6(6):597-601
 在研制YMT-S1型飞行模拟转台(以下简称转台)的过程中,作者对转台的伺服系统作了大量的实验研究,在原有伺服系统的基础上进行了改进设计,构成了“双速”伺服系统、包含速度微分反馈的速度系统及位置系统、“综合”控制伺服系统。 实验证明:三种伺服系统对提高转台的技术性能有明显效果。 本文介绍了这三种伺服系统的构成、工作原理及效果。  相似文献   

4.
本文设计并研制了高精度伺服转台的控制系统。从控制系统的伺服原理方案出发,详细的介绍了三轴精密伺服转台控制系统的硬件和软件的工程实现。该系统采用基于高速DSP为核心的控制器的双闭环伺服控制方案。实验测试结果均达到了设计指标和精度要求,表明系统设计方案的实用性和有效性。  相似文献   

5.
为解决当前飞机机身装配工装效率低、定位精度不高、通用性差等问题,根据飞机机身结构,分析其装配需求,采用模块化设计思想,研制了面向机身骨架的"龙门式"柔性装配工装。该套柔性工装能够适应截面直径尺寸小于3m、机身筒段长度3~5m的产品,通过伺服电机驱动、手工调整以及更换特殊定位器等来实现对新类型机身的定位。工装操作简单、适应性强,能够以较低的成本提供较大的柔性。  相似文献   

6.
为了方便对拉扭复合系统中2台伺服电机的控制,设计了基于MFC的上位机界面。通过串口通信,使用不同的按钮操作设置伺服驱动器相应参数,从而控制2台伺服电机的运行。上位机实时接收伺服驱动器监控数据绘制出转速、位移、转矩曲线。针对在数据接收过程中信息帧接收错误的情况,使用拼接两相邻错误信息帧的方法进行修复。结果表明:上位机界面实现了系统功能及对电机运行工况的监控。  相似文献   

7.
Expansion of tracking servo-system errors in terms of the derivatives of the output is proposed. Conditions under which the expansion of the complete output response coverages are found and a simplified example of a radar servo subsystem are discussed.  相似文献   

8.
林秀荣 《航空动力学报》1988,3(1):43-46,91-92
本文提出一种实用的轮盘优化模型,它可用中心孔半径、轮毂轴向厚度和外半径、轮颈半径以及轮毂、轮缘与轮辐转接处的转接角等几何参数来描述,整个轮盘可近似为由一系列不等轴向厚度的圆环组成。一个能自动生成计算截面的子程序,响应上述诸参数的变化,灵活地生成任意个径向厚度各异的不等轴向厚度的小圆环,以这些小圆环的轴向厚度和上述诸几何参数为设计变量,以轮盘设计的五个应力准则为约束条件,以轮盘重量为目标函数,采用随机射线法+随机投点法的组合优化方法,加速收敛,达到轮盘重量最轻,剖面形状最优。  相似文献   

9.
王巍  李然  张厚祥  于文鹏 《航空学报》2008,29(1):209-215
 首先提出了一种基于两位两通高速开关阀的无杆气缸脉宽调制(PWM)控制方案,为气缸提供了中位截止机能。然后针对Bang-Bang控制算法中存在的超调和振荡现象,提出了摩擦力和加速度(FA)补偿的变结构Bang-Bang算法。该算法综合位置和速度误差的影响构造了加速度方向切换评价函数,考虑了摩擦力对控制量设定的影响,分别依据阶跃函数、线性函数和反正切函数对活塞加速度值进行动态设定,实现了运动过程中对活塞摩擦力的补偿和加速度的调整。最后,利用该算法进行了无杆气缸的带载伺服定位试验,对3种加速度设定函数的控制效果做了比较。结果证明FA补偿变结构算法在提高气缸定位精度方面有显著效果。  相似文献   

10.
建立了阀控非对称缸主动式电液伺服加载系统的数学模型,设计了复合校正的控制策略,并作了仿真和实验研究 。  相似文献   

11.
以一种新型的运动控制器—A3200控制器为核心搭建了数控系统硬件平台,对控制器的控制函数及直接命令进行了研究,基于机床的需求开发了数控系统软件平台。同时,结合A3200控制器与伺服系统参数整定与优化方法,对伺服系统参数进行了整定和优化,提高了系统的精确性和稳定性。最后,对半球谐振子进行了加工试验,验证了数控系统的控制性能及加工精度。  相似文献   

12.
本文介绍的小功率随动系统多用试验台,是一种试验设备,它拆装组合方便,参数易于调节,可以根据不同的需要对各种实用随动系统进行模拟试验。这种试验台既可对学生进行系统工作情况演示,又可为学生开设有关的毕业设计,有利于提高学生的感性认识和动手能力。  相似文献   

13.
介绍了角速率平台伺服机构智能控制研制进展。用单片机控制,对角速率反馈通道实现了2次故障判别、1次系统重构。用Fuzzy控制建立了相应隶属函数,确定了故障判别阈值。实验表明系统工作稳定,故障的Fuzzy差别合理,故障通道切换平稳,重构后系统工作仍正常。  相似文献   

14.
朱美印  王曦  张松  但志宏  裴希同  缪柯强  姜震 《推进技术》2019,40(11):2587-2597
针对高空台飞行环境模拟系统的温度和压力在整个工作包线内的鲁棒性能控制问题,提出了一种基于LMI极点配置的PI增益调度控制设计方法。在考虑变比热容腔微分方程、管道热传导、调节阀流量特性、液压伺服动态、传感器增益对飞行环境模拟系统造成的建模不确定性的基础上,建立了完整、准确的飞行环境模拟系统非线性模型;对非线性模型进行了线性化,并根据线性模型推导了基于LMI极点配置的PI控制器设计算法;在飞行环境模拟系统的工作包线内选取了36个稳态点设计了基于LMI极点配置的PI增益调度控制器;设计了两种飞行环境模拟试验来验证设计的PI增益调度控制器的鲁棒性能。仿真结果表明,飞行环境模拟系统温度的稳态误差和动态误差均小于0.1%,压力的稳态误差小于0.5%,动态误差小于0.7%。  相似文献   

15.
介绍某飞机作动筒耐久循环试验电液伺服和加载控制系统的设计。该控制系统以工控机为核心,实时完成载荷谱的分解计算、控制信号校正、试验数据的采集和处理。  相似文献   

16.
利用滚珠丝杠的微动特性实现纳米级定位   总被引:2,自引:0,他引:2  
对用于超精密机床传动的滚珠丝杠的微动特性进行了实验研究,建立了它的数学模型,并在此基础上,进行了超精密位置伺服控制实验。实验结果表明,利用滚珠丝杠的微动特性可以实现纳米级定位  相似文献   

17.
在飞机结构试验中,通常会遇到试验加载点随试验件变形而移动变化的问题,尤其是机翼大变形会导致加载点与翼面不垂直的问题。开发一种适用于全复合材料机翼试验的随动加载系统,该系统引入有限元分析方法将机翼变形划分成N个特征飞行点,采用飞行点随动加载来保证各级加载点与翼面的垂直度,实现垂直跟随加载;应用该加载系统进行大展弦比的机翼静力试验。结果表明:运用该加载系统可顺利实现该无人机机翼试验,且加载过程平稳,试验件无抖动,变形均匀,应变数据符合试验要求,可以为类似加载系统提供设计依据。  相似文献   

18.
介绍了一种摆式大量程加速度计的工作原理.基于经典控制理论完成了加速度计各环节数学模型的建立,对加速度计悬丝支承、力矩器、位移传感器、伺服电路等部件进行了说明,阐述了该大量程加速度计的技术特点.  相似文献   

19.
在大量工艺试验的基础上,对余度伺服作动器中MCV主控阀制造的核心技术进行了系统研究,总结出了一套完整的配套加工、重叠量配磨和流量特性检测和修整的技术方案,首次在国内实现了该项技术,并且实现了工程化生产。  相似文献   

20.
电液伺服阀是飞机刹车系统的重要执行部件,影响着飞机的着陆安全。针对某型飞机电液伺服阀故 障多发的问题,运用一元线性回归分析方法构建刹车系统电液伺服阀的分析模型,根据分析模型和故障征兆判 据对电液伺服阀近期的工作数据进行分析和故障征兆诊断。结果表明:基于回归分析的故障诊断方法可以准 确地诊断电液伺服阀存在的故障征兆;早期故障征兆诊断可以预先发现电液伺服阀潜在的故障隐患,降低故障 发生率,显著提高飞机刹车系统的安全性和可靠性,也有助于优化维修策略和降低飞机全寿命维护成本。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号