首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
喷管粘结     
固体火箭发动机的喷管一般是由金属壳体与抗烧蚀的绝热层组成。其组合方法目前多用粘结法。在某型号发动机的研制过程中发现,加压方式对粘结质量有很大的影响,尤其是扩散段绝热层在采用锥体形固化夹具夹持并粘结后,当分解夹具时往往能听到撕裂声,但难于判断脱粘面的位置和大小。经分析,脱粘是由于扩散段绝热层在夹持、粘结中与锥体形夹具内胎及喷管壳体扩散段之间相互作用而产生径向胀形所致。根据这个分析,取消内锥面加压改为由端面加压的方式。实践证明:采用此项工艺技术措施后,可确保粘结组件的质量。  相似文献   

2.
本文论述了纤维缠绕复合材料发动机壳体和喷管中出现的主要缺陷,形成的原因,以及减少各类缺陷应采取的措施,从保证产品质量出发,提出了对原材料、预浸带的质量检验、产品制造工艺的控制以及产品的验收试验这三个主要环节进行全面质量控制的方法,以便最终实现固体发动机壳体和喷管的高度可靠性。  相似文献   

3.
固体火箭发动机壳体后封头屈曲分析   总被引:1,自引:0,他引:1  
用ANSYS软件对固体发动机壳体后封头进行了外压屈曲分析。结果表明,在可承受相同内压条件下金属壳体后封头比复合材料壳体后封头有更高的承受外压能力;壳体后接头、喷管固定体对后封头承外压能力有加强作用;壳体后开口直径越大,临界屈曲载荷越大。  相似文献   

4.
结合国外先进固体发动机纤维缠绕壳体与喷管连接的技术,分析了实现全复合材料固体发动机壳体-喷管的连接方式,技术途径,并提出了有关设计参数,可供设计人员参考.  相似文献   

5.
本文综述了80年代以来固体推进技术的几个主要发展动向:1.固体火箭发动机总体结构的新发展;2.广泛采用石墨纤维缠绕壳体;3.改进喷管结构及喷管材料;4.开展固体推进剂新品种的研究;5.提高生产自动化程度,降低固体发动机成本。  相似文献   

6.
近年固体火箭推进技术发展趋势   总被引:3,自引:0,他引:3  
讨论了在冷战结束后的政治、军事环境下固体发动机应用领域的动向和固体火箭推进技术的发展特点,重点了发动机设计及固体推进剂、壳体、喷管、点火系统等单项技术的发展趋势。  相似文献   

7.
研制了3台φ200mm带喷管不等开口整体缠绕壳休交验了带喷管体整体结构强度,所测壳体的实际爆破压强为11.6-13.0MPa,是设计爆破压强的1.4-1.6倍。  相似文献   

8.
在厚壁圆筒内、外压强作用下弹性应力解的基础上,利用三维问题的应力-应变关系,得到了厚壁圆筒内的应变和位移表达式;由圆管型药柱与复合材料壳体连接处的径向位移连续性条件,得到了内压作用下药柱与壳体之间的压强;讨论了该压强对药柱内应力和应变的影响,给出了药柱内的应力和应变表达式.结果表明,提高壳体圆筒的刚度或减小药柱的m数,...  相似文献   

9.
洪流 《火箭推进》2003,29(3):59-64
Astrium的航天基础技术分部(SI)正在研究下一代部分可重复使用和可重复使用液体火箭发动机的相关技术.本文总结了对以下主推力室组件所进行的技术研究工作喷注器、主燃烧室、喷管延伸段.对于高性能分级燃烧循环发动机,先进喷注器的研究重点是气态推进剂的喷注.已经为Astrium的燃烧室设计了能够喷注液氧、冷却剂氢和预燃室热气体的喷注器.另一项工作是低成本喷注器方案研究,使单喷嘴的质量流量为标准喷嘴的四倍.对于主燃烧室,可以预见的可用技术是提高可重复使用推进系统中推力室的寿命.本文研究了一种弹性内衬和一种先进热防护壳体.文中给出了这两项技术的缩尺燃烧室试验结果.另一项主要工作是增加先进高性能胀膨循环发动机燃烧室壁的热传导.本文汇总了不同结构的缩尺燃烧室试验结果.对于喷管延伸段,研究重点是陶瓷基复合材料喷管延伸段,最近对缩尺试验件进行了试验,将燃烧室试验压力提高到8MPa.对于未来的高面积比方案(HARC),最近正在设计一种热量测量喷管延伸段,用于测量在满流和分离流状态下的热传导.  相似文献   

10.
无喷管发动机内弹道性能简化计算方法   总被引:2,自引:0,他引:2  
在分析一维准定常加质管流流场的基础上,从工程设计应用的角度出发,总结了大量的无喷管发动机的试验数据,归纳出一组半经验的无喷管发动机内弹道性能简化计算公式.应用表明,该组公式可以较精确地预示无喷管发动机的性能,又可方便地用于无喷管发动机的初步设计.  相似文献   

11.
为探索大型固体火箭发动机喷管与壳体连接用的卡环结构,设计了一套试验研究装置。试验结果表明,该装置设计合理,所得试验结果与理论计算一致性较好,试验是成功的。由此使卡环结构应用于大型固体火箭发动机取得了突破性进展。  相似文献   

12.
对复合材料壳体与喷管的卡环连接结构进行了弹塑性大变形接触有限元理论分析模型的建立及有限元应力,应变数值分析。对复合材料壳体材料进行了等效正交各向异性轴对称材料模式分析;采用点点间隙单元,分析了卡环,接头及倒锥等多体接触问题。  相似文献   

13.
针对某型号发动机喷管扩张段壳体结构,建立了高精度三维扩张段热结构FEM模型,计算了喷管工作时扩张段壳体结构在承受高温、高压以及作动器外载的联合作用下,结构的应变及位移分布规律,并与全尺寸发动机喷管热联试的试验结果作对比。结果表明:热结构仿真计算与试验结果吻合较好,其中关键承载部位应变最大误差小于15%,验证了热结构仿真模型准确性及精度,可以用于工程上扩张段壳体热结构强度校核。在此基础上,以环/母向筋条数量为设计变量,采用First-order优化方法对喷管扩张段壳体结构进行减重优化设计,在满足强度和刚度要求的前提下实现了目标结构约30. 8%的有效减重。以上计算结果对于固体火箭发动机喷管扩张段壳体结构设计优化,准确预估结构安全裕度有着一定的参考价值。  相似文献   

14.
受外廓尺寸限制的火箭发动机喷管设计以及能产生最大推力的喷管造型等问题,在过去的几十年里已引起了不少研究者的注意。最近发现,在喷管的出口流场的控制面上引入“不连续性”,可以减少喷管长度。本报告给出了喷管型面的计算和推力性能比较。这里提及的控制面包括两区域,内区包含超音速膨胀流,其速度和流动方向角是随半径增大而增大的。外区包含受喷管型面影响的流场,它呈现出随半径增大而流动方向角交小的特征。在内外区的接合处,引入流动方向上的不连续性和相应的速度等熵变化,通过等熵压缩波在此接合面处相交实现“跳跃”。在控制面的上游,流动保持等熵。在本报告中所示的计算方法表明,喷管长度的减少量,是与跳跃的大小和沿控制面的位置相关联的。可以想象,只需少量的推力性能损失就可实现喷管长度的大幅度减少。这种设计观点最有希望应用在空间发动机的设计中。  相似文献   

15.
纤维缠绕壳体封头厚度的计算方法   总被引:1,自引:0,他引:1  
纤维缠绕固体发动机壳体的厚度是不均匀的,壳体的封头形状、纱带宽度及两端开口均影响它的厚度.本文利用纤维叠带几何关系推导了一种计算纤维缠绕壳体封头厚度的公式.使用这一公式计算的壳体封头厚度,经与实测值比较表明,计算精度较高,可供纤维缠绕发动机壳体设计、工艺人员使用.  相似文献   

16.
本文根据气动热化学烧蚀机理建立了固体火箭喷管内衬碳/酚醛的炭化烧蚀模型,并进行了扩张段的烧蚀率和温度分布预示计算.碳/酚醛受热时形成炭化层、热解层和基体层,主流和热解气体中具有氧化性的组分在表面与碳发生异相反应,材料的消耗带走了大量的热,有效地保护了基体.采用化学动力学控制的三方程模型、建立了化学反应质量计算方程;采用多层复合结构的瞬态导热方程和坐标变换的方法处理烧蚀移动边界,温度场计算方程;由壁面上的能量守恒关系,取得了烧蚀和温度场的耦合.通过计算,获得了烧蚀率、壁温随时间和沿喷管扩张段长度的变化,以及喷管扩张段材料内部的温度分布.导热方程用隐式格式求解,大大节省了计算机时.  相似文献   

17.
用双室串并固体火箭发动机测定由于喷管倒置引起的损失,以及用吸气式流动试验观察燃烧室内囚喷管倒置形成的流动特点。对于用双基药的实验发动机,喷管倒置150°引起的推力损失约1.8%。气流在燃烧室内有很大扰动,在倒置喷管进口附近有涡流和分离现象。  相似文献   

18.
讨论无喷管发动机的计算原理,建立该发动机工作过程的数学模型.利用Total Lagrangian法编制有限元程序,并用它来计算无喷管发动机在点火冲击、压强和烧蚀作用下,其药柱、包覆层和外壳的应力、位移以及药柱变形后内通道形状的变化.  相似文献   

19.
战术导弹固体发动机的关键技术问题   总被引:4,自引:2,他引:4  
讨论了战术导弹固体发动机在高能推进剂、碳纤维壳体、轻质小力矩柔性喷管和双脉冲发动机等关键技术方面取得的进展。其中,HTPB推进剂的性能达到比较完善的水平,已用于各类战术导弹。高能、低特征信号GAP推进剂通过了实验发动机试验。碳纤维壳体达到了实用水平。发动机能量管理和向量控制技术的研制与开发工作正在开展之中。  相似文献   

20.
运用美国联合陆海空军和国家航空航天局(JANNAF)提出的二维动力学模型修改版,我们进行了火箭喷管参数计算。本文对火箭发动机中能量释放效率作了定义,并将喷管上能量损失分为发散、摩擦和动力学损失。喷管特性设计参数与这些损失的关系也进行了研究。另外,也考虑到了喷管中激波和热损失对喷管效率的影响。喷管能量损失的确定运用了 SSME 和 Vulcan 发动机的喷管型面,后一发动机是未来运载火箭的组成部分。火箭的设计参数由推力、室压、混合比、喷管面积比和喷管几何形状确定。所有这些参数都有系统的变化,本文阐述了它们对喷管效率的影响。这些效率做为数据库用于未来运载火箭进一步的系统分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号