首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了满足系统集成度高、交联关系复杂的航电系统集成验证需求,提出了基于模型的航电系统集成验证技术。详细介绍了基于模型的航电系统仿真和测试方法,航电系统仿真建模规范,以及基于模型运行的航电系统集成验证平台。通过在航电系统集成过程中的应用,基于模型的集成方法有效地提高了航电系统集成效率,保证了航电系统集成准确度。该方法可应用于航电系统全数字集成、半物理集成和全实物动态集成,保证各阶段试验的衔接,持续提升航电系统集成工作的技术水平。  相似文献   

2.
飞机系统集成化程度的提高增加了对航空电子系统设计和分析的难度,同时也对安全性需求等系统特性的验证提出了更高的技术要求。对基于结构化分析和设计语言(AADL)的系统建模和仿真流程及相应的评估分析能力进行了介绍,并在基于AADL的航空电子系统建模框架下,提出基于AADL的航空电子系统仿真评估和验证方法,利用结构化分析和设计语言AADL构建航空电子系统典型子系统的正常模型和错误模型,并以此建立系统的扩展模型。在此基础上,利用形式化方法对系统模型进行描述并转化为Kripke结构。最后对系统模型进行模型仿真和特性验证,验证所构建的系统架构和设计逻辑是否符合系统设计特性需求。  相似文献   

3.
RTCADO-178B标准与相关国军标的对照分析   总被引:1,自引:0,他引:1  
RTCA的DO-178B标准是国际认可的开发准则,将DO-178B与我国的国标进行了对照分析,给出了异同。  相似文献   

4.
In this work, a Model-Based Systems Engineering approach based on SysML is proposed. This approach is used for the capture and the definition of functional requirements in avionics domain. The motivation of this work is triple: guide the capture of functional requirements, validate these functional requirements through functional simulation, and verify efficiently the consistency of these functional requirements. The proposed approach is decomposed into several steps that are detailed to go from conceptual model of avionics domain to a formal functional model that can be simulated in its operating context. To achieve this work, a subset of SysML has been used as an intermediate modelling language to ensure progressive transformation that can be understood and agreed by system stakeholders. Formal concepts are introduced to ensure theoretical consistency of the approach. In addition, transformation rules are defined and the mappings between concepts of ARP4754A civil aircraft guidelines and SysML are formalized through meta-model. The resulting formalization enables engineers to perform functional simulation of the top-level functional architecture extracted from operational scenarios. Finally, the approach has been tested on an industrial avionics system called the Onboard Maintenance System.  相似文献   

5.
The V-22 avionic hardware is the first to be designed under MIL-STD-2165 testability program requirements. This paper presents an overview of the avionics design-for-testability approach and lessons learned to date relative to the application of MIL-STD-2165. The paper will discuss incorporation of testability requirements up front in the avionics design which will drive the supportability philosophy at both the Organizational and Depot levels of maintenance. The paper will compare previous avionics hardware testability requirements versus those applied to the V-22 avionics and highlight areas of improvement. A discussion of testability design impacts on reduced level of testing (i.e. WRA/SRA/System) will be included. In addition, the paper discusses an innovative approach to meeting the user requirements for a man-portable forward deployed maintenance capability that forms the basis for a two level support scenario (Organizational and Depot). The innovation comes from the fact that the on-board Central Integrated Checkout system will provide data as well as fault isolation and will use this data as a mechanism to reduce the size and complexity of the stimulus and measurement hardware at either the Organizational or Depot level depending on the deployment requirements.  相似文献   

6.
航空电子系统接口控制文档工具的设计与实现   总被引:3,自引:0,他引:3  
针对基于信息管理方式实现的传统接口控制文档管理工具无法有效支持航空电子系统协同设计的问题,设计并实现了一套支持设计-分析-测试-验证流程的接口控制文档管理工具-ICDT,采用符合OSGi规范的插件开发技术,将元数据模型与对象关系数据库技术相结合,基于Hibernate/Teneo/EMF/GEF实现了对接口控制文档进行可视化的设计、分析、测试与验证。一方面解决了现有接口控制文档数据管理与航电系统设计过程脱节的问题,另一方面,通过基于系统工程的接口控制文档设计开发流程,能够有效地提高系统设计和集成验证的有效性。  相似文献   

7.
 航空电子系统的费用 效能是飞机总体系统效能的重要组成部分,也是降低飞机寿命周期费用的关键之一。在航空电子系统的总体设计阶段,传统的系统评估和优化方法主要针对的是独立子系统/设备的费用或效能指标。综合航电系统设计方案的费用 效能重要指标包括:可支付性、构型能力、任务能力、可靠性、维修性、测试性和技术风险,以组合的方式获得了相应的综合评估准则,给出了计算公式。以某新研航电系统作为实例演示了综合评估方法的实施情况,演示的重点集中于总体设计方案的可视化量化评估分析。该综合评估方法已显示出其在实际工程设计中的可行性和应用价值。  相似文献   

8.
Petri nets are graphical and mathematical tools that are applicable to many systems for modeling, simulation, and analysis. With the emergence of the concept of partitioning in time and space domains proposed in avionics application standard software interface(ARINC 653), it has become difficult to analyze time–space coupling hazards resulting from resource partitioning using classical or advanced Petri nets. In this paper, we propose a time–space coupling safety constraint and an improved timed colored Petri net with imposed time–space coupling safety constraints(TCCP-NET) to fill this requirement gap. Time–space coupling hazard analysis is conducted in three steps: specification modeling, simulation execution, and results analysis. A TCCP-NET is employed to model and analyze integrated modular avionics(IMA), a real-time, safety-critical system. The analysis results are used to verify whether there exist time–space coupling hazards at runtime. The method we propose demonstrates superior modeling of safety-critical real-time systems as it can specify resource allocations in both time and space domains. TCCP-NETs can effectively detect underlying time–space coupling hazards.  相似文献   

9.
10.
Switched Ethernet testing for avionics applications   总被引:1,自引:0,他引:1  
Switched Ethernet is being implemented as an avionics communication architecture. A commercial standard (ARINC-664) and an aircraft vendor-specific implementation known as avionics full duplex switched Ethernet (AFDX) have been developed that defines the topology and use of switched Ethernet in an avionics application. In avionics applications, the movement of data between devices must take place in a deterministic fashion and must be delivered reliably. All aircraft flight hardware must be tested to be sure that it will communicate information properly in the switched Ethernet network. The airframe manufacture must test the integrated network to verify that all flight hardware is communicating properly. Testing and maintenance testing is required to perform data communication level testing of switched Ethernet architectures for avionics applications to insure that all communication is deterministic and reliable. This paper provides an overview of a switched Ethernet avionics network and identifies the testing challenges associated with a switched Ethernet avionics application. A practical implementation performing the required tests is discussed.  相似文献   

11.
随着航空电子技术的飞速发展,航电系统将走向高度综合化、数字化、自动化、智能化,ARINC661协议应运而生。协议为座舱显示系统的设计引入标准化的接口设计及模块化理念,并提升其可移植性和可扩展性。通过对ARINC661协议的分析,研究了符号的基本概念,对符号设计器中图形坐标转换、图形高效填充绘制及数据库访问等关键技术开展研究。在此基础上设计开发了一套符合ARINC661规范的符号设计器,满足座舱显示系统的个性化需求设计。  相似文献   

12.
ARINC 653分区实时系统的可调度分析   总被引:1,自引:0,他引:1  
谭龙华  杜承烈  雷鑫 《航空学报》2015,36(11):3698-3705
ARINC 653规范定义了综合模块化航空电子(IMA)实时操作系统的行为逻辑以及向应用程序提供的接口规范。该规范规定了系统采用分区内调度和分区间调度的两级调度方案,如何分析系统的可调度性以保证实时任务能够在截止时间内完成计算是需要研究的新问题。基于负载请求与平台资源提供能力的供需约束关系导出了系统可调度的判定依据。证明了判据的约束是系统可调度的充分必要条件。实际应用表明,提出的可调度判定定理能够应用于判定ARINC 653分区实时系统的可调度性,辅助提升系统的安全属性。  相似文献   

13.
The paper synopsizes the current situation with regard to the nature of the red as well as the blue-grey forces as their capabilities impact future avionics systems. The paper describes today's climate as it relates to the avionics posture of the current and future fighter air forces, congressional desires and budgetary direction. The paper describes the current US Air Force response in the terms of modular systems. The benefits of modular avionics systems are delineated and the impact of software on this new hardware approach are explained. The way to the future is postulated in terms of the threat versus force posturing and the impact on both today's and future weapons systems. The paper concludes with several recommendations which, while they will somewhat alter traditional industrial relationships, will also address the future avionics needs of the US Armed Force.  相似文献   

14.
The requirements and diagnostic applications for the V-22 tiltrotor aircraft are used to demonstrate the unique requirements of mechanical system diagnostic design. The rationale for the approach selected is explored, and it is shown how the mechanical system diagnostic requirements affect the avionics architecture and performance requirements. It is concluded that, in light of the underdeveloped nature of mechanical diagnostics technology and the extended time required for a given mechanical diagnostic design to mature, future avionics system designs need architecture that is adaptable enough to accommodate the evolving mechanical diagnostics  相似文献   

15.
This paper is a proposal for a future method of avionics data communication. The need for this proposal results from the shortcomings in the current avionics architecture, video distribution network, and in the MIL-STD-1553 data communication system. The separately wired video and data communication systems can be combined to save weight, which is especially critical for rotorcraft. Aircraft, once fielded, have limited capacity for modification and improvement due to fixed computer throughput and processing performance, network bandwidth, and space available in the avionics equipment bays. The changes proposed by this paper are to be made in conjunction with the replacement of the redundant computer boxes with open system avionics functions on industry standard circuit cards. This open architecture approach was developed over the last ten years and is now being implemented in many aircraft applications including the F-22 and the RAH-66 programs. The V-22 rotorcraft, which although just entering production, is being modified for joint service customers where modern computer performance and expanded data network bandwidth is needed. The changes of this proposal will fill this need, reduce the weight of upcoming production models, and provide growth or spare capability so that additional video and data components can be added with minimal effect on existing components. This paper examines the current V-22 avionics video and data communication hardware and wiring and propose a new implementation of open system architecture standards with integrated digital video and data communication based on ANSI standard copper fibre channel  相似文献   

16.
High performance communications, navigation, and identification (CNI) functions on modern military aircraft are increasingly required for mission readiness. The operation of simultaneous waveforms through an integrated avionics rack of shared resources becomes a test in moving data rapidly from one signal processing stage to the next. The IEEE 1394, or Firewire, is a commercial high bandwidth bus whose 64-bit addressing and maximum 400 Mbits/second throughput satisfies this demanding military avionics interconnect need. The challenge in applying this commercial product to integrated avionics is the requirement to seamlessly add message priority encoding. By having message priorities, the slower strategic communications links will not impair the performance of higher data rate tactical communications, thereby avoiding potentially life-threatening bottlenecks. The flight environment imposes additional challenges to ruggedize the cabling between integrated avionics racks and to utilize the full capabilities of the Firewire bus. A discussion of the physical, data link, network, and transport layers, as used in avionics applications will be done. Additionally, the versatility of 1394 in military avionics with its variable channel sizes, bandwidth on demand, hierarchical addressing, and upgrade to 800 and 1600 Mbps with a 64-bit wide data path, is emphasized. Finally, system maintenance advantages of 1394's hot pluggable features are discussed, with an eye toward cost reduction on the flight line and total operational time of the aircraft avionics systems  相似文献   

17.
18.
There is a strong requirement for a new generation of avionics systems with a more integrated hardware and software structure. This integrated avionics system will use significant increases in computer automation with more innovative signal processing, sensor fusion and expert system software to reduce pilot workload, while improving total system performance and reliability. Expert system software packages will be implemented within the core architecture of these next generation integrated avionics systems to assist the pilot. The expert systems will consider the pertinent information available from the ``sensor' subsystems to assess the current situation. The expert systems then consult their knowledge base and rule base software structures to determine alternative reactions to the perceived situation. Then pending upon the critical of the function, situation and reaction, the expert system could either execute the most favorable reaction or display the suggested alternative courses of action to the pilot. This paper addresses the requirement, the enabling technologies and the potential structure of this next generation of avionics. It concludes with two examples of the potential of future avionics expert systems. The two examples are 1) A Navigation and Route Planning Expert and 2) A Threat Assessment and Threat Reaction Expert. Significant things are happening in technology at an accelerating pace that enable the development of this new generation of avionics.  相似文献   

19.
The PAVE PACE Initiative has been established to validate system avionics concepts for advanced military aircraft. The author presents the rationale of why the advanced architecture established by the PAVE PILLAR program should be continued under PAVE PACE to achieve: practical and affordable airborne versions of modular parallel processing network architectures for many applications currently beyond real-time implementation, readily available avionics for use in all avionics and, greatly improved techniques to reduce the cost of software development and support. An approach to the overall design structure for future avionics is also presented that entails: the use of CAD (computer-aided design) tools to assist in the development of system, hardware and software requirements, the use of replicated hardware modules (some at the wafer level), the use of reuseable software modules and the use of CAD tools to tailor hardware/software modules for specific application requirements. Continued use of the PAVE PILLAR high-speed data bus and operating system is recommended as the means to integrate and control the data input and output of physically and functionally separate parallel networks  相似文献   

20.
Data mining technology for failure prognostic of avionics   总被引:1,自引:0,他引:1  
Adverse environmental conditions have combined cumulative effects leading to performance degradation and failures of avionics. Classical reliability addresses statistically-generic devices and is less suitable for the situations when failures are not traced to manufacturing but rather to unique operational conditions of particular hardware units. An approach aimed at the accurate assessment of the probability of failure of any avionics unit utilizing the known history-of-abuse from environmental and operational factors is presented herein. The suggested prognostic model utilizes information downloaded from dedicated monitoring systems of flight-critical hardware and stored in a database. Such a database can be established from the laboratory testing of hardware and supplemented with real operational data. This approach results in a novel knowledge discovery from data technology that can be efficiently used in a wide area of applications and provide a quantitative basis for the modern maintenance concept known as service-when-needed. An illustrative numerical example is provided  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号