首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the implementation of the space projects Rosetta and Mars Express, a large-scale series of experiments has been carried out on radio sounding circumsolar plasma by decimeter (S-band) and centimeter (X-band) signals of the Rosetta comet probe (from October 3 to October 31, 2010) and the Mars Express satellite of Mars (from December 25, 2010 to March 27, 2011). It was found that in the phase of ingress the spacecraft behind the Sun, the intensity of the frequency fluctuations increases in accordance with a power function whose argument is the solar offset distance of radio ray path, and when the spacecraft is removed from the Sun (the egress phase), frequency fluctuations are reduced. Periodic strong increases in the fluctuation level, exceeding by a factor of 3–12 the background values of this value determined by the regular radial dependences, are imposed on the regular dependences. It was found that increasing the fluctuations of radio waves alternates with the periodicity m × T or n × T, where m = 1/2, n = 1, аnd T is the synodic period of the Sun’s rotation (T ≈ 27 days). It was shown that the corotating structures associated with the interaction regions of different speed fluxes are formed in the area of solar wind acceleration and at distances of 6–20 solar radii already have a quasi-stationary character.  相似文献   

2.
Using modern models of the plasmasphere and exosphere, radial profiles of the rates of ionization losses of protons with μ = 0.3–10 keV/nT (μ is the first adiabatic invariant) of the Earth’s radiation belts (ERBs) have been constructed. To calculate Coulomb losses of protons, we used the ISEE-1 satellite data at L = 3–9 and CRRES satellite data at L ≤ 3 (L is the McIlwain parameter). The relation of contributions of Coulomb losses and charge exchange in the rate of ionization losses of protons has been considered. We have discovered the effect of subtracting Coulomb losses from charge exchange of ERB protons for small μ and L, which can imitate a local particle source. It has been demonstrated that, with decreasing L, the rate of ionization losses of ERB protons decreases as a whole. The radial dependence of this rate only has a negative gradient in the narrow range (ΔL ~ 0.5) in the region of the plasmapause and only for protons with μ > 1.2 keV/nT.  相似文献   

3.
The variations in the spatial structure and time in electron fluxes with E = 235–300 keV in the slot region (2 < L < 3) between the radiation belts in the period of November 1, 2014 through December 8, 2014 during weak and moderate geomagnetic disturbances (Kp < 4, Dst >–60 nT) are analyzed based on the data of the RELEC complex on board the Vernov satellite (the height and inclination of the orbit are from 640 to 830 km and 98.4°, respectively). Irregular increases in the fluxes of such electrons and formation of a local maximum at L ~ 2.2–3.0 were observed. It has been shown that the intensity of this maximum is inversely proportional to the L value and grows with an increase in the geomagnetic activity level. New features discovered for the first time in the dynamics of radiation belt electrons manifest in the variations in the local structure and dynamics of fluxes of subrelativistic electrons in the slot region.  相似文献   

4.
We present the characteristics of short (duration less than 1 min) increases of the counting rate of electrons with energies >0.08 MeV observed in low-latitude (L < 2.0) regions of near-Earth space in the course of the GRIF experiment on the Spektr module of the Mir orbital station. The measurements were carried out using a set of instruments including X-ray and gamma-ray spectrometers, as well as detectors of electrons, protons, and nuclei with large and small geometrical factors, which allowed one to detect the fluxes of charged particles both in the region of the Earth’s radiation belts and in regions close to the geomagnetic equator. As a result of more than 1.5 years of observation, it is demonstrated that short increases in the intensity of electrons of subrelativistic energies are detected not only in the regions of the near-Earth space known as “precipitation zones” (1.7 < L < 2.5), but in high-latitude regions (up to the geomagnetic equator, L < 1.1) as well. Two types of increases of the electron counting rate are found: either fairly regular increases repeating on successive orbits or increases local in time. The latter type of increases can be caused by a short enhancement of electron flux on a given drift shell. The results of our measurements have shown that the duration of the detected increases in intensity can be rather short, as little as 20–30 s. Therefore, in the case of large amplitudes, such increases of the counting rate of electrons can imitate astrophysical events of the type of cosmic gamma-ray bursts in the detectors of hard X-ray and gamma radiation.  相似文献   

5.
We study the characteristics of fluxes of electrons with energy >80 keV in the near-Earth space regions corresponding to the drift shells L = 1.7, 1.4, and 1.1 observed during the entire period of the GRIF experiment onboard the Spectr module of the Mir orbital station from October 1995 to June 1997. The obtained geographic maps of the distribution of electron fluxes at the height of the station flight (400 km) and, also, the estimates of the spectra indicate that the South-Atlantic Anomaly provides for a mechanism of stable replenishment for shells with L < 1.5. The mechanism of stable replenishment of shells with L < 1.5 may be due to the scattering, in the residual atmosphere, of electrons from the inner radiation belt precipitating into the region of the South-Atlantic Anomaly.  相似文献   

6.
Characteristics of the polarization jet (PJ) are considered on the basis of measurements made in 1989–1992 at the ionospheric stations Yakutsk (L = 3.0, λ = 129.6°) and Podkamennaya Tunguska (L = 3.0, λ = 90.0°) separated in longitude. Using the data of these stations, the result obtained earlier (that the formation of PJ during disturbances in the near-midnight sector occurs at the expansion phase of a substorm) is confirmed. At isolated magnetic disturbances with AE > 500 nT in the 11:00–16:00 UT interval, the PJ band covers an MLT sector of 3 h between the Yakutsk and Podkamennaya Tunguska stations. The time of the PJ beginning at the Podkamennaya Tunguska station for the majority of events is 45–60 min behind the PJ beginning at the Yakutsk station. This corresponds to the westward motion of a PJ source with a velocity of ~3 MLT h per hour.  相似文献   

7.
An analysis of the electron density measurements (Ne) along the flyby trajectories over the high-latitude region of the Northern Hemisphere under winter conditions in 2014 and 2016 has shown that the main large-scale structure observed by Swarm satellites is the tongue of ionization (TOI). At the maximum of the solar cycle (F10.7 = 160), the average value of Ne in the TOI region at an altitude of 500 km was 8 × 104 cm–3. Two years later, at F10.7 = 100, Ne ~ 5 × 104 cm–3 and Ne ~2.5 × 104 cm–3 were observed at altitudes of 470 and 530 km, respectively. During the dominance of the azimuthal component of the interplanetary magnetic field, the TOI has been observed mainly on the dawn or dusk side depending on the sign of B y . Simultaneous observations of the convective plasma drift velocity in the polar cap show the transpolar flow drift to the dawn (By < 0) or dusk side (B y < 0). Observations and numerical simulation of the Ne distribution have confirmed the significant role of the electric field of the magnetospheric convection in the generation of large-scale irregularities in the polar ionosphere.  相似文献   

8.
Depleted narrow (localized in longitude) regions (field tubes) in the plasmasphere, recently discovered in He+ radiation measurements on the IMAGE spacecraft, were first directly observed by the Magion-5 satellite. The low-density regions (notches) occupy <~ 10–30° in longitude and extend from L ~ 2–3 to the plasmasphere boundary in neighboring plasmasphere regions with larger densities. The Magion-5 data give evidence that in the low-density regions temperature is enhanced as compared to the neighboring denser plasmasphere regions. Formation of notches in the plasmasphere is, apparently, associated with AE intensification during weak magnetic storms, while strong magnetic storms usually result in the overall reduction of plasmasphere dimensions. However, even a strong magnetic storm on April 6–7, 2000 (max K p = 9-and min D st ~ ?290 nT), but accompanied by an isolated AE impulse, resulted in a density decrease only in the longitudinally limited post-midnight sector of the plasmasphere.  相似文献   

9.
The results of studies of longitudinal and LT variations in parameters of the ionosphere–plasmasphere system, obtained using the Global Self-Consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP), assimilation ionospheric model IRI Real-Time Assimilation Mapping (IRTAM), and satellite and ground-based observational data are presented in the paper. The study of the main morphological features of longitudinal and LT variations in the critical frequency of the ionospheric F2 layer (foF2) and total electron content (TEC) depending on latitude in the winter solstice during a solar-activity minimum (December 22, 2009) is carried out. It is shown that the variations in foF2 and TEC, on the whole, are identical, and so mutually substitutable, while creating empirical models of these parameters in quiet geomagnetic conditions. The longitudinal and LT variations in both foF2 and TEC are within an order of magnitude everywhere except for the equator anomaly region, where LT variation is larger by an order of magnitude than longitudinal variation. According to the results of the study, in the American longitudinal sector at all latitudes of the Southern (summer) Hemisphere, maxima of foF2 and TEC are formed. The near-equatorial and high-latitudinal maxima are separated out from these. The estimate of the contribution into the longitudinal variation in foF2 and TEC for various local time sectors and at various latitudes has been obtained for the first time. In the Southern (summer) Hemisphere, longitudinal variation in foF2 and TEC is formed in the nighttime.  相似文献   

10.
The integrable case of the perturbed two-body problem is considered. The perturbation is determined by the potential of a special form. The L-matrix is chosen in such a way that partial separation of variables should take place in regular coordinates. Integration of the equations of motion of the problem under consideration is made. The solutions are expressed through elliptic functions. The orbits for various cases are constructed. The results of numerical calculations are given.  相似文献   

11.
The concept of the System for the Observation of Daytime Asteroids (SODA system) has been developed, the purpose of which is to detect at least 95% of hazardous celestial bodies larger than 10 m in size that fly towards Earth from the Sun side. Spacecraft, equipped with the optimum version, which has three wide-angle optical telescopes of small aperture (20–30 cm) will be placed in a halo orbit around the L1 libration point of the Sun–Earth system. This will provide a warning on the hazardous object, approaching from the Sun side, and will allow one to determine the orbit and the point of body entering Earth atmosphere to a sufficient accuracy, at least a few hours before the body collides with Earth. The requirements to the system are considered, the results of a preliminary design of the set of instruments have been described, the areas of visibility are calculated, and the versions of data transmission modes have been proposed. It has been shown that, in cooperation with other (particularly ground-based) projects aimed to observing objects flying from the night sky side, it is possible to detect in advance all hazardous bodies in the near-Earth space larger than 10 m in size that approach Earth from almost any direction.  相似文献   

12.
Saturn’s rotation relative to a center of mass is considered within an elliptic restricted three-body problem. It is assumed that Saturn is a solid under the action of gravity of the Sun and Jupiter. The motions of Saturn and Jupiter are considered elliptic with small eccentricities eS and eJ, respectively; the mean motion of Jupiter nJ is also small. We obtain the averaged Hamiltonian function for a small parameter of ε = nJ and integrals of evolution equations. The main effects of the influence of Jupiter on Saturn’s rotation are described: (α) the evolution of the constant parameters of regular precession for the angular momentum vector I2; (β) the occurrence of new libration zones of oscillations I2 near the plane of the celestial equator parallel to the plane of the Jupiter’s orbit; (γ) the occurrence of additional unstable equilibria of vector I2 at the points of the north and south poles of the celestial sphere and, as a result, the existence of homoclinic trajectories; and (δ) the existence of periodic trajectories with arbitrarily large periods near the homoclinic trajectory. It is shown that the effects of (β), (γ), and (δ) are caused by the eccentricity e of the Jupiter’s orbit and are practically independent of Jupiter’s mass (within satellite approximation).  相似文献   

13.
Based on the comparison of solar activity indices (annual average values of the relative number of sunspots Rz12 and solar radio emission flux at a wavelength of 10.7 cm F12) with the ionospheric index of solar activity IG12 for 1954–2013, we have found that the index F12 is a more accurate (than Rz12) indicator of solar activity for the long-term forecast of foF2 (the critical frequency of the F2-layer). This advantage of the F12 index becomes especially significant after 2000 if the specific features of extreme ultraviolet radiation of the Sun are additionally taken into account in the minima of solar cycles, using an appropriate correction to F12. Qualitative arguments are given in favor of the use of F12 for the long-term forecast of both foF2 and other ionospheric parameters.  相似文献   

14.
This work is a continuation of investigation [1] of the behavior of the solar wind’s and interplanetary magnetic field’s parameters near the onset of geomagnetic storms for various types of solar wind streams. The data of the OMNI base for the 1976–2000 period are used in the analysis. The types of solar wind streams were determined, and the times of beginning (onsets) of magnetic storms were distributed in solar wind types as follows: CIR (121 storms), Sheath (22 storms), MC (113 storms), and “uncertain type” (367 storms). The growth of variations (hourly standard deviations) of the density and IMF magnitude was observed 5–10 hours before the onset only in the Sheath. For the CIR-, Sheath-and MC-induced storms the dependence between the minimum of the IMF B z-component and the minimum of the D st -index, as well as the dependence between the electric field E y of solar wind and the minimum of the D st -index are steeper than those for the “uncertain” solar wind type. The steepest D st vs. B z dependence is observed in the Sheath, and the steepest D st vs. E y dependence is observed in the MC.  相似文献   

15.
Planar orbits of three-dimensional restricted circular three-body problem are considered as a special case of three-dimensional orbits, and the second-order monodromy matrices M (in coordinate z and velocity v z ) are calculated for them. Semi-trace s of matrix M determines vertical stability of an orbit. If |s| ≤ 1, then transformation of the subspace (z, v z ) in the neighborhood of solution for the period is reduced to deformation and a rotation through angle φ, cosφ = s. If the angle ? can be rationally expressed through 2π,φ = 2π·p/q, where p and q are integer, then a planar orbit generates the families of three-dimensional periodic solutions that have a period larger by a factor of q (second kind Poincareé periodic solutions). Directions of continuation in the subspace (z, v z ) are determined by matrix M. If |s| < 1, we have two new families, while only one exists at resonances 1: 1 (s = 1) and 2: 1 (s = ?1). In the course of motion along the family of three-dimensional periodic solutions, a transition is possible from one family of planar solutions to another one, sometimes previously unknown family of planar solutions.  相似文献   

16.
Energetic solar proton events within the energy interval 1–48 MeV at the stage of their decay are considered over the period of 1974–2001. The dependence of the characteristic decay time on the proton energy in the assumed power-law representation τ(E) =E ?n is analyzed for the events with an exponential decay form. The dependence of n on the heliolongitude of the flare (the particles source on the Sun) is studied.  相似文献   

17.
The results of simultaneous analysis of plasma and magnetic field characteristics measured on the INTERBALL/Tail Probe, WIND and Geotail satellites on March 2, 1996, are presented. During these observations the INTERBALL/Tail Probe crossed the low-latitude boundary layer, and the WIND and Geotail satellites measured the solar wind’s and magnetosheath’s parameters, respectively. The plasma and magnetic field characteristics in these regions have been compared. The data of the Corall, Electron, and MIF instruments on the INTERBALL/Tail Probe satellite are analyzed. Fluctuations of the magnetic field components and plasma velocity in the solar wind and magnetosheath, measured onboard the WIND and Geotail satellites, are compared. The causes resulting in appearance of plasma jet flows in the low-latitude boundary layer are analyzed. The amplitude of magnetic field fluctuations in the magnetosheath for a studied magnetosphere boundary crossing is shown to exceed the magnetic field value below the magnetopause near the cusp. The possibility of local violation of pressure balance on the magnetopause is discussed, as well as penetration of magnetosheath plasma into the magnetosphere, as a result of magnetic field and plasma flux fluctuations in the magnetosheath.  相似文献   

18.
In this paper, we analyzed the thermal and energy characteristics of the plasma components observed during the magnetic dipolarizations in the near tail by the Cluster satellites. It was previously found that the first dipolarization the ratio of proton and electron temperatures (T p/T e) was ~6–7. At the time of the observation of the first dipolarization front T p/T e decreases by up to ~3–4. The minimum value T p/T e (~2.0) is observed behind the front during the turbulent dipolarization phase. Decreases in T p/T e observed at this time are associated with an increase in T e, whereas the proton temperature either decreases or remains unchanged. Decreases of the value T p/T e during the magnetic dipolarizations coincide with increase in wave activity in the wide frequency band up to electron gyrofrequency f ce. High-frequency modes can resonantly interact with electrons causing their heating. The acceleration of ions with different masses up to energies of several hundred kiloelectron-volts is also observed during dipolarizations. In this case, the index of the energy spectrum decreases (a fraction of energetic ions increases) during the enhancement of low-frequency electromagnetic fluctuations at frequencies that correspond to the gyrofrequency of this ion component. Thus, we can conclude that the processes of the interaction between waves and particles play an important role in increasing the energy of plasma particles during magnetic dipolarizations.  相似文献   

19.
Radio bursts in the frequency range of 100–1500 kHz, recorded in 1997–2000 on the INTERBALL-1 satellite during the solar flares preceding the strong geomagnetic storms with D st < ?100 nT, are analyzed in this paper. The observed long-wave III-type radio bursts of solar origin at frequencies of 1460 and 780 kHz were characterized by large values of the flux S f = 10?15 ?10?17 W/m2 Hz and duration longer than 10 min. The rapid frequency drift of a modulated radio burst continued up to a frequency of 250 kHz, which testified that the exciting agent (a beam of energetic electrons) propagated from the Sun to the Earth. All such flares were characterized by the appearance of halo coronal mass ejections, observed by the LASCO/SOHO, and by the presence of a southward Bz-component of the IMF, measured on the ACE and WIND spacecraft. In addition, shortly after radio bursts, the INTERBALL-1 satellite has recorded the fluxes of energetic electrons with E > 40 keV.  相似文献   

20.
Results of the analysis of 327 sessions of radio occultation on satellite-to-satellite paths are presented. The data are taken in the nighttime polar ionosphere in the regions with latitudes of 67°–88°, and in the period of high solar activity from October 26, 2003 to November 9, 2003. Typical ionospheric changes in the amplitude and phase of decimeter radio waves on paths GPS satellites-CHAMP satellite are presented. It is demonstrated that these data make it possible to determine characteristics of the sporadic E s structures in the lower ionosphere at heights of 75–120 km. Histograms of distribution of the lower and upper boundaries, thickness, and intensity of the E s structures are presented. Dispersion and spectra of amplitude fluctuations of decimeter radio waves caused by small-scale irregularity of the ionospheric plasma are analyzed. The relation of the polar E s structures and intensity of small-scale plasma irregularity to various manifestations of solar activity is discussed. The efficiency of monitoring the ionospheric disturbances caused by shock waves of the solar wind by the radio occultation method on satellite-to-satellite paths is demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号