首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
《中国航空学报》2016,(5):1226-1236
Previous studies have shown that asymmetric vortex wakes over slender bodies exhibit a multi-vortex structure with an alternate arrangement along a body axis at high angle of attack. In this investigation, the effects of wing locations along a body axis on wing rock induced by forebody vortices was studied experimentally at a subcritical Reynolds number based on a body diameter. An artificial perturbation was added onto the nose tip to fix the orientations of forebody vortices. Par-ticle image velocimetry was used to identify flow patterns of forebody vortices in static situations, and time histories of wing rock were obtained using a free-to-roll rig. The results show that the wing locations can affect significantly the motion patterns of wing rock owing to the variation of multi-vortex patterns of forebody vortices. As the wing locations make the forebody vortices a two-vortex pattern, the wing body exhibits regularly divergence and fixed-point motion with azimuthal varia-tions of the tip perturbation. If a three-vortex pattern exists over the wing, however, the wing-rock patterns depend on the impact of the highest vortex and newborn vortex. As the three vortices together influence the wing flow, wing-rock patterns exhibit regularly fixed-points and limit-cycled oscillations. With the wing moving backwards, the newborn vortex becomes stronger, and wing-rock patterns become fixed-points, chaotic oscillations, and limit-cycled oscillations. With fur-ther backward movement of wings, the vortices are far away from the upper surface of wings, and the motions exhibit divergence, limit-cycled oscillations and fixed-points. For the rearmost location of the wing, the wing body exhibits stochastic oscillations and fixed-points.  相似文献   

2.
The analysis of the passive rotation feature of a micro Flapping Rotary Wing(FRW)applicable for Micro Air Vehicle(MAV) design is presented in this paper. The dynamics of the wing and its influence on aerodynamic performance of FRW is studied at low Reynolds number(~10~3).The FRW is modeled as a simplified system of three rigid bodies: a rotary base with two flapping wings. The multibody dynamic theory is employed to derive the motion equations for FRW. A quasi-steady aerodynamic model is utilized for the calculation of the aerodynamic forces and moments. The dynamic motion process and the effects of the kinematics of wings on the dynamic rotational equilibrium of FWR and the aerodynamic performances are studied. The results show that the passive rotation motion of the wings is a continuous dynamic process which converges into an equilibrium rotary velocity due to the interaction between aerodynamic thrust, drag force and wing inertia. This causes a unique dynamic time-lag phenomena of lift generation for FRW, unlike the normal flapping wing flight vehicle driven by its own motor to actively rotate its wings. The analysis also shows that in order to acquire a high positive lift generation with high power efficiency and small dynamic time-lag, a relative high mid-up stroke angle within 7–15° and low mid-down stroke angle within -40° to -35° are necessary. The results provide a quantified guidance for design option of FRW together with the optimal kinematics of motion according to flight performance requirement.  相似文献   

3.
In this paper, we study the aerodynamic interactions between the contralateral wings and between the body and wings of a model insect, when the insect is hovering and has various translational and rotational motions, using the method numerically solving the Navier-Stokes equations over moving overset grids. The aerodynamic interactional effects are identified by compar-ing the results of a complete model insect, the corresponding wing pair, single wing and body without the wings. Horizontal, vertical and lateral translations and roll, pitch and yaw rotations at small speeds are considered. The results indicate that for the motions considered, both the interaction between the contralateral wings and the interaction between the body and wings are weak. The changes in the forces and moments of a wing due to the contralateral wing interaction, of the wings due to the pres-ence of the body, and of the body due to the presence of the wings are generally less than 4.5%. Results show that aerodynamic forces of wings and body can be measured or computed separately in the analysis of flight stability and control of hovering in-sects.  相似文献   

4.
《中国航空学报》2016,(5):1196-1204
The flow fields over a generic cranked double delta wing were investigated. Pressure and velocity distributions were obtained using a Pitot tube and a hot wire anemometer. Two different leading edge shapes, namely ‘‘sharp" and ‘‘round", were applied to the wing. The wing had two sweep angles of 55° and 30°. The experiments were conducted in a closed circuit wind tunnel at velocity 20 m/s and angles of attack of 5°–20° with the step of 5°. The Reynolds number of the model was about 2 ×10~5 according to the root chord. A dual vortex structure was formed above the wing surface. A pressure drop occurred at the vortex core and the root mean square of the measured velocity increased at the core of the vortices, reflecting the instability of the flow in that region. The magnitude of power spectral density increased strongly in spanwise direction and had the maximum value at the vortex core. By increasing the angle of attack, the pressure drop increased and the vortices became wider; the vortices moved inboard along the wing, and away from the surface; the flow separation was initiated from the outer portion of the wing and developed to its inner part. The vortices of the wing of the sharp leading edge were stronger than those of the round one.  相似文献   

5.
A generic aircraft usually loses its static directional stability at moderate angle of attack(typically 20–30°). In this research, wind tunnel studies were performed using an aircraft model with moderate swept wing and a conventional vertical tail. The purpose of this study was to investigate flow mechanisms responsible for static directional stability. Measurements of force, surface pressure and spatial flow field were carried out for angles of attack from 0° to 46° and sideslip angles from-8° to 8°. Results of the wind tunnel experiments show that the vertical tail is the main contributor to static directional stability, while the fuselage is the main contributor to static directional instability of the model. In the sideslip attitude for moderate angles of attack, the fuselage vortex and the wing vortex merged together and changed asymmetrically as angle of attack increased on the windward side and leeward side of the vertical tail. The separated asymmetrical vortex flow around the vertical tail is the main reason for reduction in the static directional stability. Compared with the wing vortices, the fuselage vortices are more concentrated and closer to the vertical tail, so the yawing moment of vertical tail is more unstable than that when the wings are absent. On the other hand,the attached asymmetrical flow over the fuselage in sideslip leads to the static directional instability of the fuselage being exacerbated. It is mainly due to the predominant model contour blockage effect on the windward side flow over the model in sideslip, which is strongly affected by angle of attack.  相似文献   

6.
《中国航空学报》2016,(6):1527-1540
A generic aircraft usually loses its static directional stability at moderate angle of attack (typically 20–30?). In this research, wind tunnel studies were performed using an aircraft model with moderate swept wing and a conventional vertical tail. The purpose of this study was to investigate flow mechanisms responsible for static directional stability. Measurements of force, surface pressure and spatial flow field were carried out for angles of attack from 0? to 46? and sideslip angles from ?8? to 8?. Results of the wind tunnel experiments show that the vertical tail is the main contributor to static directional stability, while the fuselage is the main contributor to static directional instabil-ity of the model. In the sideslip attitude for moderate angles of attack, the fuselage vortex and the wing vortex merged together and changed asymmetrically as angle of attack increased on the wind-ward side and leeward side of the vertical tail. The separated asymmetrical vortex flow around the vertical tail is the main reason for reduction in the static directional stability. Compared with the wing vortices, the fuselage vortices are more concentrated and closer to the vertical tail, so the yaw-ing moment of vertical tail is more unstable than that when the wings are absent. On the other hand, the attached asymmetrical flow over the fuselage in sideslip leads to the static directional instability of the fuselage being exacerbated. It is mainly due to the predominant model contour blockage effect on the windward side flow over the model in sideslip, which is strongly affected by angle of attack.  相似文献   

7.
Experimental investigation of large amplitude yaw-roll coupled oscillations was conducted in a low-speed wind tunnel using an aircraft configuration model. A special test rig was designed and constructed to provide different coupled motions from low to high angles of attack.A parameter ‘‘coupling ratio" was introduced to indicate the extent of yaw-roll coupling. At each pitch angle, seven coupling ratios were designed to study the yaw-roll coupling effects on the lateraldirectional aerodynamic characteristics systematically. At high angles of attack, the damping characteristics of yawing and rolling moments drastically varied with coupling ratios. In the coupled motions with the rotation taking place about the wind axis, the lateral-directional aerodynamic moments exhibited unsteady characteristics and were different from the ‘‘quasi-steady" results of the rotary balance tests. The calculated results of the traditional aerodynamic derivative method were also compared with the experimental data. At low and very high angles of attack, the aerodynamic derivative method was applicative. However, within a wide range of angles of attack, the calculated results of aerodynamic derivative method were inconsistent with the experimental data, due to the drastic changes of damping characteristics of lateral-directional aerodynamic moments with yaw-roll coupling ratios.  相似文献   

8.
Responding to a need for experimental data on a standard wind tunnel model at high angles of attack in the supersonic speed range, and in the absence of suitable reference data, a series of tests of two HB-2 standard models of different sizes was performed in the T-38 trisonic wind tunnel of Vojnotehnickˇi Institut(VTI), in the Mach number range 1.5–4.0, at angles of attack up to+30°. Tests were performed at relatively high Reynolds numbers of 2.2 millions to 4.5 millions(based on model forebody diameter). Results were compared with available low angle of attack data from other facilities, and, as a good agreement was found, it was assumed that, by implication, the obtained high angle of attack results were valid as well. Therefore, the results can be used as a reference database for the HB-2 model at high angles of attack in the supersonic speed range, which was not available before. The results are presented in comparison with available reference data, but also contain data for some Mach numbers not given in other publications.  相似文献   

9.
《中国航空学报》2016,(6):1506-1516
Numerical simulation of wing stall of a blended flying wing configuration at transonic speed was conducted using both delayed detached eddy simulation(DDES) and unsteady Reynolds-averaged Navier-Stokes(URANS) equations methods based on the shear stress transport(SST) turbulence model for a free-stream Mach number 0.9 and a Reynolds number 9.6 × 10~6. A joint time step/grid density study is performed based on power spectrum density(PSD) analysis of the frequency content of forces or moments, and medium mesh and the normalized time scale0.010 were suggested for this simulation. The simulation results show that the DDES methods perform more precisely than the URANS method and the aerodynamic coefficient results from DDES method compare very well with the experiment data. The angle of attack of nonlinear vortex lift and abrupt wing stall of DDES results compare well with the experimental data. The flow structure of the DDES computation shows that the wing stall is caused mainly by the leeward vortex breakdown which occurred at x/x_(cr)= 0.6 at angle of attack of 14°. The DDES methods show advantage in the simulation problem with separation flow. The computed result shows that a shock/vortex interaction is responsible for the wing stall caused by the vortex breakdown. The balance of the vortex strength and axial flow, and the shock strength, is examined to provide an explanation of the sensitivity of the breakdown location. Wing body thickness has a great influence on shock and shock/vortex interactions, which can make a significant difference to the vortex breakdown behavior and stall characteristic of the blended flying wing configuration.  相似文献   

10.
This research investigates the aerodynamic performance and flow characteristics of a delta wing with 65° sweep angle and with coarse axial riblets,and then compares with that of a smooth-surface delta wing.Particle Image Velocimetry(PIV)were utilized to visualize the flow over the wing at 6 cross-sections upright to the wing surface and parallel to the wing span,as well as 3 longitudinal sections on the leading edge,symmetry plane,and a plane between them at Angles of Attack(AOA)=20°and 30°and Re=1.2×10~5,2.4×10~5,and 3.6×10~5.The effects of the riblets were studied on the vortices diameter,vortex breakdown location,vortices distance from the wing surface,flow lines pattern nearby the wing,circulation distribution,and separation.The results show that the textured model has a positive effect on some of the parameters related to drag reduction and lift increase.The riblets increase the flow momentum near the wing’s upper surface except near the apex.They also increase the flow momentum behind the wing.  相似文献   

11.
钝头体窄条翼布局导弹在大攻角下拥有极为优异的纵向气动特性,但横向容易失稳,做快速机动时容易诱发非指令的横向不稳定运动。通过开展高速风洞自由摇滚试验和数值模拟,研究了窄条翼导弹自由摇滚特性和流动机理,试验与计算吻合较好。研究发现:较大迎角时,窄条翼面积中心距离尾舵前缘根部5~6倍直径时,模型会进入极限环摇滚,窄条翼位置对模型稳定性有显著的影响,去掉窄条翼或尾舵时,模型均不会进入摇滚;模型空间流场特性表明,气流经过窄条翼时形成的片涡,对背风舵产生强烈的干扰,抑制了尾舵涡的形成和发展,使背风舵动态失稳,导致模型进入极限环摇滚。  相似文献   

12.
耿玺  史志伟  程克明  龚正  刘超 《航空学报》2015,36(10):3241-3248
为了分析带边条翼导弹模型的非线性自由滚转运动及滚转稳定特性,采用理论分析与动态测力试验、滚转自由度释放测量试验相结合的方式,对低速来流条件下模型0°~60°迎角范围内的滚转运动、滚转稳定特性随迎角变化的规律进行了研究。在10°迎角时,模型在4个"+"形位置是滚转静稳定的并且在"+"形位置上滚转运动保持平衡;迎角大于20°的范围内滚转静稳定的平衡位置变到4个"×"形位置上;并且迎角为20°时模型在"×"形位置滚转保持平衡,迎角大于30°后模型产生滚转极限环自激振荡运动,迎角达到60°时模型的滚转运动发散演变为高速旋转的形式。研究结果表明:模型滚转运动的形式决定于滚转力矩的静、动稳定特性。  相似文献   

13.
魏德宸  史志伟  耿玺  刘超  昂海松 《航空学报》2016,37(10):3003-3010
为研究鸭式布局飞行器摇滚特性,设计了一种包括鸭翼、脊型前体、边条翼、主翼和垂尾的模型,进行了自由滚转、扰动滚转、静动态测力和烟线流场显示多种技术手段相结合的风洞试验。通过自由滚转和扰动滚转试验得到了该模型翼体摇滚的时间历程,静态测力和动导数测定验证了非极限环运动形式摇滚的发生。结果表明该鸭式布局模型摇滚不仅同侧存在多个摇滚平衡点,而且在临界俯仰角,摇滚过程中可能出现从一摇滚平衡点跳动至同侧另一摇滚平衡点的突变。通过流场显示技术得到该鸭式布局模型复杂流场的基本形态分布,并对滚转角为0°时的全机涡系干扰和摇滚形成机理进行了简要分析。  相似文献   

14.
简要介绍了翼身组合体高速风洞自由摇滚实验技术的实验装置、实验方法、数据采集等。开展了翼身组合体大迎角下的摇滚特性研究,给出了典型的结果,研究结果表明随着模型迎角的增加,翼身组合体呈现不同的滚转运动形态,包括静态稳定、准极限环摇滚等。所研究的参数范围内后掠角对摇滚有较大影响,随着模型迎角的增加摇滚振幅呈现抛物线,马赫数的增加对最大摇滚振幅起抑制作用。  相似文献   

15.
This paper addresses a variable phase control issue for suppressing wing rock with hysteresis. In free-to-roll tests, as the angle of attack (AOA) is increased, the roll angle versus the rolling moment indicates hysteresis and provides clues about where wing rock motion is being driven and where the motion is being damped. We present the analysis method of wing rock energy to explain the mechanism of wing rock and the formation of hysteresis, and then develop a variable phase control (VPC) scheme to compensate the phase and magnitude distortions. The effectiveness and robustness of the proposed scheme are demonstrated by suppressing wing rock phenomenon at various AOA and any initial conditions.  相似文献   

16.
采用计算流体力学(CFD)数值模拟方法,研究战术导弹大迎角状态下涡破裂导致滚转力矩随迎角非线性增长引起舵面控制能力不足的现象。首先通过标准模型的数值分析,验证了所采用的CFD方法具有三角翼前缘涡破裂现象的捕捉能力;然后采用雷诺平均Navier-Stokes方程对某“++”字正常布局导弹构型(含弹翼、弹身、尾舵和整流罩等)进行了数值模拟,结果显示亚声速状态下滚转力矩在迎角大于20°时出现非线性增长,导致全动尾舵的滚转控制能力不足。通过分解各部件对滚转力矩的贡献,并分析流场结构,探明了该现象发生的流动机理,其主要原因是:随着迎角的增长,弹体迎风面的尾舵前缘涡首先发生破裂,导致其平衡诱导滚转力矩的作用被削弱。  相似文献   

17.
 采用计算流体力学(CFD)数值模拟方法,研究战术导弹大迎角状态下涡破裂导致滚转力矩随迎角非线性增长引起舵面控制能力不足的现象。首先通过标准模型的数值分析,验证了所采用的CFD方法具有三角翼前缘涡破裂现象的捕捉能力;然后采用雷诺平均Navier-Stokes方程对某“++”字正常布局导弹构型(含弹翼、弹身、尾舵和整流罩等)进行了数值模拟,结果显示亚声速状态下滚转力矩在迎角大于20°时出现非线性增长,导致全动尾舵的滚转控制能力不足。通过分解各部件对滚转力矩的贡献,并分析流场结构,探明了该现象发生的流动机理,其主要原因是:随着迎角的增长,弹体迎风面的尾舵前缘涡首先发生破裂,导致其平衡诱导滚转力矩的作用被削弱。  相似文献   

18.
介绍了高速风洞自由摇滚实验技术的实验装置、实验方法、数据采集等。开展了方型截面导弹大迎角下的摇滚特性研究,给出了典型的结果,研究结果表明随着模型迎角的增加,方形截面导弹呈现不同的滚转运动形态,包括静态稳定、准极限环摇滚、双周期震荡和等速滚转。最后对摇滚的机理进行了探讨与分析。  相似文献   

19.
在FL-23风洞中开展了80°/65°双三角翼大迎角下的滚转特性研究.包括静态测力试验.动导数试验和自由滚转试验,通过静态测力试验及动导数试验获得了双三角翼模型在大迎角条件下的滚转力矩特性以及动导数特性,从而对双三角翼大迎角条件下的滚转运动特性进行了预测.最后通过自由摇滚试验对预测结果进行了验证。研究结果表明随着模型迎角的增加,双三角翼呈现不同的滚转运动形态,包括静态稳定、舣周期震荡、准极限环摇滚.通过静态气动力及动导数可以较准确地对模型的运动形态及对应的迎角范围进行预测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号