首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A Gaussian Mixture PHD Filter for Jump Markov System Models   总被引:11,自引:0,他引:11  
The probability hypothesis density (PHD) filter is an attractive approach to tracking an unknown and time-varying number of targets in the presence of data association uncertainty, clutter, noise, and detection uncertainty. The PHD filter admits a closed-form solution for a linear Gaussian multi-target model. However, this model is not general enough to accommodate maneuvering targets that switch between several models. In this paper, we generalize the notion of linear jump Markov systems to the multiple target case to accommodate births, deaths, and switching dynamics. We then derive a closed-form solution to the PHD recursion for the proposed linear Gaussian jump Markov multi-target model. Based on this an efficient method for tracking multiple maneuvering targets that switch between a set of linear Gaussian models is developed. An analytic implementation of the PHD filter using statistical linear regression technique is also proposed for targets that switch between a set of nonlinear models. We demonstrate through simulations that the proposed PHD filters are effective in tracking multiple maneuvering targets.  相似文献   

2.
Tracking multiple targets with uncertain target dynamics is a difficult problem, especially with nonlinear state and/or measurement equations. With multiple targets, representing the full posterior distribution over target states is not practical. The problem becomes even more complicated when the number of targets varies, in which case the dimensionality of the state space itself becomes a discrete random variable. The probability hypothesis density (PHD) filter, which propagates only the first-order statistical moment (the PHD) of the full target posterior, has been shown to be a computationally efficient solution to multitarget tracking problems with a varying number of targets. The integral of PHD in any region of the state space gives the expected number of targets in that region. With maneuvering targets, detecting and tracking the changes in the target motion model also become important. The target dynamic model uncertainty can be resolved by assuming multiple models for possible motion modes and then combining the mode-dependent estimates in a manner similar to the one used in the interacting multiple model (IMM) estimator. This paper propose a multiple-model implementation of the PHD filter, which approximates the PHD by a set of weighted random samples propagated over time using sequential Monte Carlo (SMC) methods. The resulting filter can handle nonlinear, non-Gaussian dynamics with uncertain model parameters in multisensor-multitarget tracking scenarios. Simulation results are presented to show the effectiveness of the proposed filter over single-model PHD filters.  相似文献   

3.
A nonlinear IMM algorithm for maneuvering target tracking   总被引:1,自引:0,他引:1  
In target tracking, the measurement noise is usually assumed to be Gaussian. However, the Gaussian modeling of the noise may not be true. Noise can be non-Gaussian. The non-Gaussian noise arising in a radar system is known as glint noise. The distribution of glint noise is long tailed and will seriously affect the tracking performance. We develop a new algorithm that can effectively track a maneuvering target in the glint environment The algorithm incorporates the nonlinear Masreliez filter into the interactive multiple model (IMM) method. Simulations demonstrate the superiority of the new algorithm  相似文献   

4.
In this paper, an improved implementation of multiple model Gaussian mixture probability hypothesis density (MM-GM-PHD) filter is proposed. For maneuvering target tracking, based on joint distribution, the existing MM-GM-PHD filter is relatively complex. To simplify the filter, model conditioned distribution and model probability are used in the improved MM-GM-PHD filter. In the algorithm, every Gaussian components describing existing, birth and spawned targets are estimated by multiple model method. The final results of the Gaussian components are the fusion of multiple model estimations. The algorithm does not need to compute the joint PHD distribution and has a simpler computation procedure. Compared with single model GM-PHD, the algorithm gives more accurate estimation on the number and state of the targets. Compared with the existing MM-GM-PHD algorithm, it saves computation time by more than 30%. Moreover, it also outperforms the interacting multiple model joint probabilistic data association (IMMJPDA) filter in a relatively dense clutter environment.  相似文献   

5.
This paper studies the dynamic estimation problem for multitarget tracking. A novel gating strategy that is based on the measurement likelihood of the target state space is proposed to improve the overall effectiveness of the probability hypothesis density(PHD) filter. Firstly, a measurement-driven mechanism based on this gating technique is designed to classify the measurements. In this mechanism, only the measurements for the existing targets are considered in the update step of the existing targets while the measurements of newborn targets are used for exploring newborn targets. Secondly, the gating strategy enables the development of a heuristic state estimation algorithm when sequential Monte Carlo(SMC) implementation of the PHD filter is investigated, where the measurements are used to drive the particle clustering within the space gate.The resulting PHD filter can achieve a more robust and accurate estimation of the existing targets by reducing the interference from clutter. Moreover, the target birth intensity can be adaptive to detect newborn targets, which is in accordance with the birth measurements. Simulation results demonstrate the computational efficiency and tracking performance of the proposed algorithm.  相似文献   

6.
未知测量噪声分布下的多目标跟踪算法   总被引:2,自引:0,他引:2  
周承兴  刘贵喜 《航空学报》2010,31(11):2228-2237
 粒子概率假设密度滤波(SMC-PHDF)在进行粒子更新时需要知道测量噪声的概率分布以计算似然函数,这使得SMC-PHDF依赖于测量噪声的概率模型。针对这一点不足,提出一种未知测量噪声分布下的多目标跟踪算法——基于风险评估的概率假设密度滤波(RE-PHDF)。该算法在SMC-PHDF进行概率假设密度(PHD)粒子更新时采用风险函数计算每个PHD粒子的风险值,并通过一个风险评估函数评估每个PHD粒子,然后用评估后的结果更新粒子的权值。由于粒子更新时避免了在多维测量空间中计算似然函数,算法不仅不依赖于测量噪声的概率分布,还可以节省大量计算时间。仿真结果表明:和SMC-PHDF相比,RE-PHDF在未知的复杂测量噪声环境下具有更高的鲁棒性和稳定性;同时,在两种算法跟踪精度接近的情况下,所提算法节省了50%的运行时间。  相似文献   

7.
The problem of tracking a maneuvering target with a high measurement frequency is considered. The measurement noise is significantly correlated when the measurement frequency is high. A simple decorrelation process is proposed to enhance the interacting multiple model (IMM) algorithm to track a maneuvering target with correlated measurement noise. It is found that the decorrelation process may improve system performance significantly, especially in velocity and acceleration estimations  相似文献   

8.
为了解决大场景下基于三维到达角的目标跟踪问题,提出了一种具有无偏性的伪线性卡尔曼滤波。首先,基于三维到达角信息对目标运动模型与量测模型进行建模;之后,对量测模型进行了伪线性化处理,得到了线性形式的目标量测模型。为了解决伪线性卡尔曼滤波存在的有偏性问题,提出了一种结合EKF(extend Kalman filter)的三维伪线性无偏卡尔曼滤波。仿真实验表明,该模型能够对非机动目标与机动目标有效跟踪,对于百公里级别的目标,当角测量误差从0.1°变化到0.5°,算法在仿真时间结束时均能将绝对位置误差降低至10 km以内,且算法的运行速度与EKF为同一个量级,同时兼顾了抗干扰能力、定位跟踪精度、运行效率的要求,能够为大场景下的目标跟踪提供有效方法。  相似文献   

9.
在机动多目标跟踪问题中,目标数未知或随时间而变化,概率假设密度(PHD)滤波可以在每一时间步估计多目标状态和目标数,但单模型方法不能给出精确的估计。提出了一种交互多模型PHD滤波方法,建立多模型描述多目标运动方式,利用PHD滤波结合多模型跟踪目标运动轨迹。同时,给出了多传感器交互多模型PHD滤波方法,以提高目标跟踪精度。  相似文献   

10.
阐述了当跟踪非机动目标时,传统的Kalman滤波可以得到很好的跟踪精度。但是当日标机动时,传统的Kalman滤波不能对目标的突然变化做出及时的改正和预测,因此跟踪精度很差,甚至出现丢失目标的情况。文中采用的基于截断正态概率模型的改进自适应目标跟踪算法, 其结构和计算简单,鲁棒性好,较好地解决了使用Kalman滤波带来的不足。  相似文献   

11.
Mobile robots are often subject to multiplicative noise in the target tracking tasks, where the multiplicative measurement noise is correlated with additive measurement noise. In this paper,first, a correlation multiplicative measurement noise model is established. It is able to more accurately represent the measurement error caused by the distance sensor dependence state. Then, the estimated performance mismatch problem of Cubature Kalman Filter(CKF) under multiplicative noise is analyzed. An i...  相似文献   

12.
In Bayesian multi-target fltering,knowledge of measurement noise variance is very important.Signifcant mismatches in noise parameters will result in biased estimates.In this paper,a new particle flter for a probability hypothesis density(PHD)flter handling unknown measurement noise variances is proposed.The approach is based on marginalizing the unknown parameters out of the posterior distribution by using variational Bayesian(VB)methods.Moreover,the sequential Monte Carlo method is used to approximate the posterior intensity considering non-linear and non-Gaussian conditions.Unlike other particle flters for this challenging class of PHD flters,the proposed method can adaptively learn the unknown and time-varying noise variances while fltering.Simulation results show that the proposed method improves estimation accuracy in terms of both the number of targets and their states.  相似文献   

13.
The majority of tactical weapons systems require that manned maneuverable vehicles, such as aircraft, ships, and submarines, be tracked accurately. An optimal Kalman filter has been derived for this purpose using a target model that is simple to implement and that represents closely the motions of maneuvering targets. Using this filter, parametric tracking accuracy data have been generated as a function of target maneuver characteristics, sensor observation noise, and data rate and that permits rapid a priori estimates of tracking performance to be made when maneuvering targets are to be tracked by sensors providing any combination of range, bearing, and elevation measurements.  相似文献   

14.
一种新的基于机动检测的机动目标跟踪算法   总被引:3,自引:0,他引:3  
针对Kalman滤波跟踪机动目标发散和目前多数自适应Kalman滤波算法对运动模型适应性不强的问题,提出了一种新的基于机动检测的机动目标跟踪算法,通过实时自适应的改变滤波模型提高对机动目标跟踪精度。对这种方法与Kalman滤波算法进行了计算机仿真比较,结果表明,该方法计算量小,可实时精确地自适应匹配目标的运动模型,可实现对机动目标稳定可靠的跟踪。  相似文献   

15.
The probability hypothesis density (PHD) filter is a practical alternative to the optimal Bayesian multi-target Alter based on finite set statistics. It propagates the PHD function, a first-order moment of the full multi-target posterior density. The peaks of the PHD function give estimates of target states. However, the PHD filter keeps no record of target identities and hence does not produce track-valued estimates of individual targets. We propose two different schemes according to which PHD filter can provide track-valued estimates of individual targets. Both schemes use the probabilistic data-association functionality albeit in different ways. In the first scheme, the outputs of the PHD filter are partitioned into tracks by performing track-to-estimate association. The second scheme uses the PHD filter as a clutter filter to eliminate some of the clutter from the measurement set before it is subjected to existing data association techniques. In both schemes, the PHD filter effectively reduces the size of the data that would be subject to data association. We consider the use of multiple hypothesis tracking (MHT) for the purpose of data association. The performance of the proposed schemes are discussed and compared with that of MHT.  相似文献   

16.
Canonical transform for tracking with kinematic models   总被引:1,自引:0,他引:1  
A canonical transform is presented that converts a coupled or uncoupled kinematic model for target tracking into a decoupled dimensionless canonical form. The coupling is due to non-zero off-diagonal terms in the covariance matrices of the process noise and/or the measurement noise, which can be used to model the coupling of motion and/or measurement between coordinates. The decoupled dimensionless canonical form is obtained by simultaneously diagonalizing the noise covariance matrices, followed by a spatial-temporal normalization procedure. This canonical form is independent of the physical specifications of an actual system. Each subsystem corresponding to a canonical coordinate is characterized by its process noise standard deviation, called the maneuver index as a generalization of the tracking index for target tracking, which characterizes completely the performance of a steady-state Kalman filter. A number of applications of this canonical form are discussed. The usefulness of the canonical transform is illustrated via an example of performance analysis of maneuvering target tracking in an air traffic control (ATC) system.  相似文献   

17.
Application of the Kalman-Levy Filter for Tracking Maneuvering Targets   总被引:3,自引:0,他引:3  
Among target tracking algorithms using Kalman filtering-like approaches, the standard assumptions are Gaussian process and measurement noise models. Based on these assumptions, the Kalman filter is widely used in single or multiple filter versions (e.g., in an interacting multiple model (IMM) estimator). The oversimplification resulting from the above assumptions can cause degradation in tracking performance. In this paper we explore the application of Kalman-Levy filter to handle maneuvering targets. This filter assumes a heavy-tailed noise distribution known as the Levy distribution. Due to the heavy-tailed nature of the assumed distribution, the Kalman-Levy filter is more effective in the presence of large errors that can occur, for example, due to the onset of acceleration or deceleration. However, for the same reason, the performance of the Kalman-Levy filter in the nonmaneuvering portion of track is worse than that of a Kalman filter. For this reason, an IMM with one Kalman and one Kalman-Levy module is developed here. Also, the superiority of the IMM with Kalman-Levy module over only Kalman-filter-based IMM for realistic maneuvers is shown by simulation results.  相似文献   

18.
Track labeling and PHD filter for multitarget tracking   总被引:5,自引:0,他引:5  
Multiple target tracking requires data association that operates in conjunction with filtering. When multiple targets are closely spaced, the conventional approaches (as, e.g., MHT/assignment) may not give satisfactory results. This is mainly because of the difficulty in deciding what the number of targets is. Recently, the probability hypothesis density (PHD) filter has been proposed and particle filtering techniques have been developed to implement the PHD filter. In the particle PHD filter, the track labeling problem is not considered, i.e., the PHD is obtained only for a frame at a time, and it is very difficult to perform the multipeak extraction, particularly in high clutter environments. A track labeling method combined with the PHD approach, as well as considering the finite resolution, is proposed here for multitarget tracking, i.e., we keep a separate tracker for each target, use the PHD in the resolution cell to get the estimated number and locations of the targets at each time step, and then perform the track labeling ("peak-to-track" association), whose results can provide information for PHD peak extraction at the next time step. Besides, by keeping a separate tracker for each target, our approach provides more information than the standard particle PHD filter. For example, in group target tracking, if we are interested in the motion of a specific target, we can track this target, which is not possible for the standard particle PHD filter, since the standard particle PHD filter does not keep track labels. Using our approach, multitarget tracking can be performed with automatic track initiation, maintenance, spawning, merging, and termination  相似文献   

19.
20.
An improved algorithm for tracking multiple maneuvering targets is presented. This approach is implemented with an approximate adaptive filter consisting of the one-step conditional maximum-likelihood technique together with the extended Kalman filter and an adaptive maneuvering compensator. In order to avoid the extra computational burden of considering events with negligible probability, a validation matrix is defined in the tracking structure. With this approach, data-association and target maneuvering problems can be solved simultaneously. Detailed Monte Carlo simulations of the algorithm for many tracking situations are described. Computer simulation results indicate that this approach successfully tracks multiple maneuvering targets over a wide range of conditions  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号