首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
《中国航空学报》2016,(3):714-721
In this paper, a new nonlinear augmented observer is proposed and applied to satellite attitude control systems. The observer can estimate system state and actuator fault simultaneously. It can enhance the performances of rapidly-varying faults estimation. Only original system matrices are adopted in the parameter design. The considered faults can be unbounded, and the proposed augmented observer can estimate a large class of faults. Systems without disturbances and the fault whose finite times derivatives are zero piecewise are initially considered, followed by a discussion of a general situation where the system is subject to disturbances and the finite times derivatives of the faults are not null but bounded. For the considered nonlinear system, convergence conditions of the observer are provided and the stability analysis is performed using Lyapunov direct method. Then a feasible algorithm is explored to compute the observer parameters using linear matrix inequalities (LMIs). Finally, the effectiveness of the proposed approach is illustrated by considering an example of a closed-loop satellite attitude control system. The simulation results show satisfactory perfor-mance in estimating states and actuator faults. It also shows that multiple faults can be estimated successfully.  相似文献   

2.
针对近地航天器量子导航定位系统,为了进一步提高其定位精度,利用滤波技术将QPS测量值结合航天器的运动模型进行状态量的滤波估计.给出了基于基线干涉原理的量子定位系统观测方程和以二体运动为主的航天器轨道运动模型,在此基础上详细推导了扩展卡尔曼滤波处理过程,并针对该模型进行了仿真.仿真结果表明,基于EKF的量子导航定位精度有明显提高.  相似文献   

3.
《中国航空学报》2023,36(2):17-28
It is common for aircraft to encounter atmospheric turbulence in flight tests. Turbulence is usually modeled as stochastic process noise in the flight dynamics equations. In this paper, parameter estimation of nonlinear dynamic system with both process and measurement noise was studied, and a practical filter error method was proposed. The linearized Kalman filter of first-order approximation was used for state estimation, in which the filter gain, along with the system parameters and the initial states, constituted the parameter vector to be estimated. The unknown parameters and measurement noise covariance were estimated alternately by a relaxation iteration method, and the sensitivities of observations to unknown parameters were calculated by finite difference approximation. Some practical aspects of the method application were discussed. The proposed filter error method was validated by the flight simulation data of a research aircraft. Then, the method was applied to the flight tests of a subscale aircraft, and the aerodynamic stability and control derivatives were estimated. All the estimation results were compared with the results of the output error method to demonstrate the effectiveness of the approach. It is shown that the filter error method is superior to the output error method for flight tests in atmospheric turbulence.  相似文献   

4.
The paper deals with state estimation problem of nonlinear non-Gaussian discrete dynamic systems for improvement of accuracy and consistency. An efficient new algorithm called the adaptive Gaussian-sum square-root cubature Kalman filter(AGSSCKF) with a split-merge scheme is proposed. It is developed based on the squared-root extension of newly introduced cubature Kalman filter(SCKF) and is built within a Gaussian-sum framework. Based on the condition that the probability density functions of process noises and initial state are denoted by a Gaussian sum using optimization method, a bank of SCKF are used as the sub-filters to estimate state of system with the corresponding weights respectively, which is adaptively updated. The new algorithm consists of an adaptive splitting and merging procedure according to a proposed split-decision model based on the nonlinearity degree of measurement. The results of two simulation scenarios(one-dimensional state estimation and bearings-only tracking) show that the proposed filter demonstrates comparable performance to the particle filter with significantly reduced computational cost.  相似文献   

5.
In micro-electro-mechanical system based inertial navigation system(MEMS-INS)/global position system(GPS) integrated navigation systems, there exist unknown disturbances and abnormal measurements. In order to obtain high estimation accuracy and enhance detection sensitivity to faults in measurements, this paper deals with the problem of model-based robust estimation(RE) and fault detection(FD). A filter gain matrix and a post-filter are designed to obtain a RE and FD algorithm with current measurements, which is different from most of the existing priori filters using measurements in one-step delay. With the designed filter gain matrix, the H-infinity norm of the transfer function from noise inputs to estimation error outputs is limited within a certain range; with the designed post-filter, the residual signal is robust to disturbances but sensitive to faults. Therefore, the algorithm can guarantee small estimation errors in the presence of disturbances and have high sensitivity to faults. The proposed method is evaluated in an integrated navigation system, and the simulation results show that it is more effective in position estimation and fault signal detection than priori RE and FD algorithms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号