首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
设计研制了一种适于机翼分离流动控制的八字形出口合成射流激励器,对其出口射流与主流的相互作用特性进行了研究,粒子图像测速仪(PIV)流场测试和边界层速度型测试结果揭示了其控制机制为促进边界层与主流的诱导掺混,提升边界层底层能量。利用该激励器阵列对NACA633-421三维直机翼模型开展了针对射流能量比Cμ和阵列位置两个参数的分离流控制研究,天平测力及翼型表面测压结果显示该激励器可有效抑制翼面流动分离、推迟失速迎角。在设计范围内,射流能量比Cμ值越大,控制效果越好,当Cμ=0.00168时,机翼最大升力系数提升了5.92%,失速迎角推迟了2.5°(激励器阵列位于0.3c处)。激励器阵列的弦向布置位置是一个重要控制参数,阵列位于0.3c处时最大升力系数提升量大于位于0.55c时。  相似文献   

2.
雷诺数是表征流体粘性对流动影响的相似参数,对飞机部件的气动性能具有重要的影响.利用商业软件CFX对某民用涡桨飞机增升装置构型进行变雷诺数计算研究,详细分析雷诺数对升力系数、失速特性以及附面层速度特性的影响.结果表明:雷诺数对最大升力系数和失速迎角都有显著的影响;不同雷诺数下机翼分离形态变化显著,大雷诺数下机翼分离区域较小;不同雷诺数下机翼附面层状态不一致,雷诺数增大使得附面层速度型更饱满,机翼的抗分离能力增强.  相似文献   

3.
超临界机翼介质阻挡放电等离子体流动控制   总被引:3,自引:2,他引:3  
张鑫  黄勇  王勋年  王万波  唐坤  李华星 《航空学报》2016,37(6):1733-1742
为了进一步提高等离子体激励器可控雷诺数,采用测力以及粒子图像测速(PIV)等研究方法,从二维机翼到三维半模,从低雷诺数到高雷诺数,开展了对称布局式介质阻挡放电(DBD)等离子体激励器控制超临界机翼气动特性的试验研究,分析了控制机理,实现了等离子体"虚拟舵面"的功能。结果表明:在雷诺数为2×106的情况下,对称布局式等离子体气动激励能较好地抑制超临界机翼绕流流场分离,使失速迎角推迟2°,最大升力系数提高8.98%。  相似文献   

4.
等离子体合成射流改善翼型气动性能实验研究   总被引:3,自引:2,他引:1       下载免费PDF全文
李洋  梁华  贾敏  宋慧敏  李军  魏彪  吴云 《推进技术》2017,38(9):1943-1949
等离子体合成射流(PSJ)是一种新型主动流动控制激励器,目前研究大多集中于激励特性,对于流动控制的应用研究还明显不足。为了深入探究PSJ翼型流动分离的控制能力与规律,以高升力翼型为载体,在翼型前缘施加等离子体合成射流激励(PSJA),研究激励器对升力特性的影响。结果表明:在翼型前缘施加PSJA,可以有效抑制流动分离;近失速迎角状态下,各个激励频率下都能产生良好的控制效果;过失速迎角状态下,低频效果最好,随激励电压增加,有效频率范围变宽;激励效果随来流速度增加而减弱,当来流速度20m/s时,翼型的失速迎角提高5°,最大升力系数提高8.1%;当来流速度为40m/s时,失速迎角提高3°,最大升力系数提高4.5%。  相似文献   

5.
低雷诺数下空气黏性效应突出,翼型表面普遍存在层流分离现象,相比常规雷诺数情况气动特性显著恶化。采用带预处理的Roe方法求解非定常可压缩Navier-Stokes方程的数值模拟技术和低雷诺数低湍流度风洞油流显示试验技术,对FX63-137翼型不同雷诺数下气动特性和流动结构展开深入研究。通过风洞油流显示试验可以清晰获得低雷诺数层流分离流动的两道油流汇集线。数值模拟结果表明其分别为时均化主分离线和二次分离线,两种结果定性定量均吻合较好,证明了本文的研究方法有效可靠;雷诺数从500 000降至20 000,翼型气动特性和层流分离流动结构均发生显著的变化,伴随阻力系数剧增和升力系数剧降,时均化流动结构从附体至出现经典的长层流分离泡,并最终演化为后缘层流分离泡,相应的两种分离泡的非定常流动结构也存在显著差异;对于阻力系数和升力系数而言,存在不同的临界雷诺数,因为导致阻力系数剧增的机理在于经典长层流分离泡的产生使翼型压差阻力大增,而造成升力系数剧降的主要原因在于后缘层流分离泡使得等效翼型后部弯度减小;非定常结果显示正是由于翼型表面漩涡周期性的生成与脱落,才造成了低雷诺数下升力系数的周期性波动。翼型上表面主分离涡即将脱落时,流线在后缘附近再附,升力系数达到峰值;而当流体从下表面向上卷起二次分离涡时,尾部流线大尺度分离,升力系数降至谷值。  相似文献   

6.
牛中国  胡秋琦  梁华  刘捷  许相辉  蒋甲利 《推进技术》2019,40(12):2821-2831
为改善飞翼模型低速、大迎角气动特性,在试验段截面为4.5m×3.5m的低速生产型风洞中开展了大展弦比飞翼模型微秒脉冲等离子体流动控制的试验研究,所用的飞翼模型展长为2.4m,展弦比为5.79,试验研究采用了测力和PIV (Particle Image Velocimetry)两种试验方法。通过测力试验研究了等离子体激励位置和激励频率对飞翼模型失速特性的影响,通过PIV流动显示试验给出了等离子体对翼面流场结构的影响。试验研究表明:等离子体控制能显著改善大展弦比飞翼模型低速大迎角下的气动特性,激励位置和激励频率对流动控制效果具有较大影响;等离子体激励位置在机翼前缘驻点附近、激励频率为100Hz时控制效果最好;试验风速V=70m/s (Re=2.61×106),等离子体激励的峰峰值电压为10kV时飞翼模型的最大升力系数提高20.51%,失速迎角推迟6°。  相似文献   

7.
低雷诺数下层流分离的等离子体控制   总被引:1,自引:0,他引:1  
孟宣市  杨泽人  陈琦  白鹏  胡海洋 《航空学报》2016,37(7):2112-2122
为有效控制层流分离特性,消除或减弱低雷诺数时小迎角下的升力非线性现象,改善翼型升力特性,并通过翼型的上表面转捩带与油流显示测量对等离子体激励控制机理进行阐述,对厚度为16%椭圆翼型低雷诺数下的气动特性进行了风洞试验研究。在此基础上,在上表面前缘10%弦长处布置激励器,通过压力分布测量观察等离子体激励对层流分离的影响。试验结果表明:当翼型上表面仅发生层流分离时,等离子体激励和转捩带的作用类似,可以有效延迟或者消除后缘层流分离,从而增加升力;当翼型上表面出现层流分离气泡并发生再附现象时,等离子体可以有效减小或者消除层流分离泡的范围,从而减小升力;通过控制层流分离,占空循环等离子体激励可以实现对低雷诺数小迎角下的升力的线性控制。  相似文献   

8.
合成双射流控制翼型分离流动的数值研究   总被引:4,自引:0,他引:4  
合成双射流激励器是合成射流技术发展的最新成果,所形成的射流具有更高能量、流动更稳定的特点。采用数值模拟的方法,对比研究了合成射流与合成双射流对翼型分离流动的改善效果。结果表明:合成射流可以将翼型失速攻角提高2°、最大升力系数增加18%,合成双射流可以将翼型失速攻角提高4°、最大升力系数增加35%,证明了合成双射流具有更好的分离流动控制效果。另外着重分析了合成双射流工作频率和动量系数对控制效果的影响,发现当激励器工作频率为流场特征频率的1和2倍时,对翼型气动特性的改善效果最好,同时控制效果会随动量系数的增加而增大。  相似文献   

9.
等离子体气动激励抑制机翼失速分离的实验   总被引:1,自引:0,他引:1  
进行了等离子体气动激励抑制机翼失速分离的风洞实验,研究了等离子体气动激励频率、电压、占空比和激励位置等对流动控制效果的影响.研究表明:在来流速度35m/s时,等离子体气动激励可以有效地抑制机翼大攻角下吸力面的流动分离,将机翼临界失速迎角由17°提高到19°;施加激励后,机翼最大升力系数提高了9.45%,阻力系数减小20.9%;激励频率在200Hz时,控制效果最好,对应的量纲一激励频率为1;迎角越大,流动分离越严重,需要更大的激励电压才能够有效抑制流动分离;最佳激励位置在流动分离起始点的前缘;在流动控制效果相当时,减小占空比可以降低能耗.   相似文献   

10.
李国强  常智强  张鑫  阳鹏宇  陈立 《航空学报》2018,39(8):122111-122111
针对动态失速引起的翼型气动性能恶化的问题,利用小型化的激励电源和介质阻挡放电等离子体激励器,借助动态压力测量和外触发式粒子图像测速(PIV)等手段开展了翼型动态失速等离子体流动控制试验研究。结果表明,等离子体气动激励能够有效控制翼型动态失速,改善平均气动力,提高翼型气动效率,减小气动力随迎角变化的迟滞区域。等离子体诱导出前缘附近的贴体翼面涡,促进分离流再附;增加了上翼面0.2~0.4弦长区域的吸力,减小了升力系数功率谱密度(PSD)分布的二、三、四阶能量幅值,在研究工况下实现了平均升力系数增加7.1%、失速迎角推迟1.3°和迟滞区域减小4.5%的明显控制效果;4°~9°迎角段,等离子体使得翼型平均阻力系数减小40%。此外,振荡频率增加使翼型绕流的非定常性增强,较高雷诺数下的翼型动态分离涡更加难以被抑制,均需要增加等离子体激励强度才能达到较好的控制效果。  相似文献   

11.
谢理科  梁华  赵光银  魏彪  苏志  陈杰  田苗 《推进技术》2020,41(2):294-304
介质阻挡放电(DBD)均匀稳定、易于敷设,是机翼/翼型等离子体流动控制(PFC)中最常用的激励方式。射频介质阻挡放电激励频率高、放电功率大,且能在流场中产生明显的加热,应用潜力大。采用射频电源驱动DBD激励器产生等离子体,分析放电的体积力、热特性和诱导流场特性,开展了射频介质阻挡放电改善NACA 0015翼型气动性能的实验,研究了占空比、调制频率、载波频率和电源功率等参数对流动控制效果的影响规律。结果表明:射频等离子体激励的体积力效应随激励电压的增大而增加;射频等离子体激励产生的热量在诱导的流场中进行传导,加速流场;当来流速度为20m/s,Re=3.36×10~5时,在翼型前缘施加激励,使翼型临界失速迎角推迟1°,最大升力系数增大6.43%,且在过失速迎角下仍具有流动控制效果,使升力下降变缓;调制频率越大,控制效果越好;存在最佳占空比、载波频率和功率,占空比对流场控制效果的影响最显著,最佳占空比、载波频率和功率分别为20%,460kHz和50W。射频等离子体激励以体积力效应、热效应和诱导壁面射流改善失速流场,使得NACA0015翼型气动性能极大改善,流动分离得到有效控制。  相似文献   

12.
《中国航空学报》2016,(3):585-595
In this paper,the effects of icing on an NACA 23012 airfoil have been studied.Experiments were applied on the clean airfoil,runback ice,horn ice,and spanwise ridge ice at a Reynolds number of 0.6 106 over angles of attack from 8° to 20°,and then results are compared.Generally,it is found that ice accretion on the airfoil can contribute to formation of a flow separation bubble on the upper surface downstream from the leading edge.In addition,it is made clear that spanwise ridge ice provides the greatest negative effect on the aerodynamic performance of the airfoil.In this case,the stall angle drops about 10° and the maximum lift coefficient reduces about50% which is hazardous for an airplane.While horn ice leads to a stall angle drop of about 4° and a maximum lift coefficient reduction to 21%,runback ice has the least effect on the flow pattern around the airfoil and the aerodynamic coefficients so as the stall angle decreases 2° and the maximum lift reduces about 8%.  相似文献   

13.
《中国航空学报》2020,33(10):2535-2554
Introducing active flow control into the design of flapping wing is an effective way to enhance its aerodynamic performance. In this paper, a novel active flow control technology called Co-Flow Jet (CFJ) is applied to flapping airfoils. The effect of CFJ on aerodynamic performance of flapping airfoils at low Reynolds number is numerically investigated using Unsteady Reynolds Averaged Navier-Stokes (URANS) simulation with Spalart-Allmaras (SA) turbulence model. Numerical methods are validated by a NACA6415-based CFJ airfoil case and a S809 pitching airfoil case. Then NACA6415 baseline airfoil and NACA6415-based CFJ airfoil with jet-off and jet-on are simulated in flapping motion, with Reynolds number 70,000 and reduced frequency 0.2. As a result, CFJ airfoils with jet-on generally have better lift and thrust characteristics than baseline airfoils and jet-off airfoil when Cμ is greater than 0.04, which results from the CFJ effect of reducing flow separation by injecting high-energy fluid into boundary layer. Besides, typical kinematic and geometric parameters, including the reduced frequency and the positions of the suction and injection slot, are systematically studied to figure out their influence on aerodynamic performance of the CFJ airfoil. And a variable Cμ jet control strategy is proposed to further improve effective propulsive efficiency. Compared with using constant Cμ, an increase of effective propulsive efficiency by 22.6% has been achieved by using prescribed variable Cμ for NACA6415-based CFJ airfoil at frequency 0.2. This study may provide some guidance to performance enhancement for Flapping wing Micro Air Vehicles (FMAV).  相似文献   

14.
深入研究低雷诺数滑流对机翼的影响,能够推进临近空间低速流动机理性研究,提供可靠的气动参数。参考某太阳能无人机,建立单螺旋桨计算模型,采用两叶螺旋桨,通过ICEM网格软件生成具有两个计算域的高质量结构网格,应用滑移网格边界条件,对模型进行数值模拟;分析低雷诺数螺旋桨滑流的发展和机翼在滑流作用下的非定常气动特性,研究不同螺旋桨位置对机翼气动特性的影响,计算结果表明螺旋桨滑流会很大程度地改变机翼表面压力分布和沿翼展的升力分布,对机翼升阻特性有显著影响,同时螺旋桨滑流可以抑制机翼表面层流分离泡的产生。  相似文献   

15.
《中国航空学报》2021,34(9):133-142
The low-speed wind tunnel experiment is carried out on a simplified aircraft model to explore the influence of wing flexibility on the aircraft aerodynamic performance. The investigation involves the measurements of force, membrane deformation and velocity field at Reynolds number of 5.4 × 104–1.1 × 105. In the lift curves, two peaks are observed. The first peak, corresponding to the stall, is sensitive to the wing flexibility much more than the second peak, which nearly keeps constant. For the optimal case, in comparison with the rigid wing model, the delayed stall of nearly 5° is achieved, and the relative lift increment is about 90%. It is revealed that the lift enhanced region corresponds to the larger deformation and stronger vibration, which leads to stronger flow mixing near the flexible wing surface. Thereby, the leading-edge separation is suppressed, and the aerodynamic performance is improved significantly. Furthermore, the effects of sweep angle and Reynolds number on the aerodynamic characteristics of flexible wing are also presented.  相似文献   

16.
低速翼型分离流动的等离子体主动控制研究   总被引:3,自引:0,他引:3  
为了研究等离子体激励器的放电形式及其诱导气流的规律,以及翼型迎角、自由来流速度分别对翼型流动分离抑制效果的影响。在低速、低雷诺数条件下利用介质阻挡放电等离子体激励器对NACA0015翼型进行了主动流动控制研究。结果表明:介质阻挡放电的形式为丝状放电;等离子体激励器诱导气流的方向由裸露电极指向覆盖电极,由电极的布置方式决定,与接线方式无关;当来流速度为25m/s,雷诺数为2.03×10^5时,等离子体气动激励可以有效地抑制翼型吸力面的流动分离,翼型最大升力系数增大约为9.7%,翼型l临界失速迎角由17.5°增大到20.5°;翼型失速延迟的真正原因并非单纯的气流加速;等离子体激励器的作用效果随着来流速度的提高而减弱,研究非定常激励或等离子体激励器与流场之间的耦合效应,也许更加具有潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号