首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Efficient robust AMF using the FRACTA algorithm   总被引:1,自引:0,他引:1  
The FRACTA algorithm has been shown to be an effective space-time adaptive processing (STAP) methodology for the airborne radar configuration in which there exists nonhomogeneous clutter, jamming, and dense target clusters. Further developments of the FRACTA algorithm are presented here in which the focus is on the robust, efficient implementation of the FRACTA algorithm. Enhancements to the FRACTA algorithm include a censoring stopping mechanism, an alternative data blocking approach for adaptive power residue (APR) censoring, and a fast reiterative censoring (RC) procedure. Furthermore, a coherent processing interval (CPI) segmentation scheme for computing the adaptive weights is presented as an alternative approach to computing the adaptive matched filter (AMF) weight vector that allows for lower sample support and reduced computational complexity. The enhanced FRACTA algorithm, denoted as FRACTA.E, is applied to the KASSPER I challenge datacube which possesses dense ground target clusters that are known to have a significant deleterious effect on standard adaptive matched filtering (AMF) processors. It is shown that the FRACTA.E algorithm outperforms and is considerably more computationally efficient than both the original FRACTA algorithm and the standard sliding window processing (SWP) approach. Furthermore, using the KASSPER I datacube, the FRACTA.E algorithm is shown to have the same detection performance as the clairvoyant algorithm where the exact range-dependent clutter covariance matrices are known.  相似文献   

2.
Stap using knowledge-aided covariance estimation and the fracta algorithm   总被引:1,自引:0,他引:1  
In the airborne space-time adaptive processing (STAP) setting, a priori information via knowledge-aided covariance estimation (KACE) is employed in order to reduce the required sample support for application to heterogeneous clutter scenarios. The enhanced FRACTA (FRACTA.E) algorithm with KACE as well as Doppler-sensitive adaptive coherence estimation (DS-ACE) is applied to the KASSPER I & II data sets where it is shown via simulation that near-clairvoyant detection performance is maintained with as little as 1/3 of the normally required number of training data samples. The KASSPER I & II data sets are simulated high-fidelity heterogeneous clutter scenarios which possess several groups of dense targets. KACE provides a priori information about the clutter covariance matrix by exploiting approximately known operating parameters about the radar platform such as pulse repetition frequency (PRF), crab angle, and platform velocity. In addition, the DS-ACE detector is presented which provides greater robustness for low sample support by mitigating false alarms from undernulled clutter near the clutter ridge while maintaining sufficient sensitivity away from the clutter ridge to enable effective target detection performance  相似文献   

3.
Importance sampling for characterizing STAP detectors   总被引:1,自引:0,他引:1  
This paper describes the development of adaptive importance sampling (IS) techniques for estimating false alarm probabilities of detectors that use space-time adaptive processing (STAP) algorithms. Fast simulation using IS methods has been notably successful in the study of conventional constant false alarm rate (CFAR) radar detectors, and in several other applications. The principal objectives here are to examine the viability of using these methods for STAP detectors, develop them into powerful analysis and design algorithms and, in the long term, use them for synthesizing novel detection structures. The adaptive matched filter (AMF) detector has been analyzed successfully using fast simulation. Of two biasing methods considered, one is implemented and shown to yield good results. The important problem of detector threshold determination is also addressed, with matching outcome. As an illustration of the power of these methods, two variants of the square-law AMF detector that are thought to be robust under heterogeneous clutter conditions have also been successfully investigated. These are the envelope-law and geometric-mean STAP detectors. Their CFAR property is established and performance evaluated. It turns out the variants have detection performances better than those of the AMF detector for training data contaminated by interferers. In summary, the work reported here paves the way for development of advanced estimation techniques that can facilitate design of powerful and robust detection algorithms  相似文献   

4.
Multistage partially adaptive STAP CFAR detection algorithm   总被引:1,自引:0,他引:1  
A new method of partially adaptive constant false-alarm rate (CFAR) detection is introduced. The processor implements a novel sequence of orthogonal subspace projections to decompose the Wiener solution in terms of the cross-correlation observed at each stage. The performance is evaluated using the general framework of space-time adaptive processing (STAP) for the cases of both known and unknown covariance. It is demonstrated that this new approach to partially adaptive STAP outperforms the more complex eigen-analysis approaches using both simulated DARPA Mountain Top data and true pulse-Doppler radar data collected by the MCARM radar  相似文献   

5.
Due to the range ambiguity of high pulse-repetition frequency (HPRF) radars, echoes from far-range fold over near-range returns. This effect may cause low Doppler targets to compete with near-range strong clutter. Another consequence of the range ambiguity is that the sample support for estimating the array covariance matrix is reduced, leading to degraded performance. It is shown that space-time adaptive processing (STAP) techniques are required to reject the clutter in HPRF radar. Four STAP methods are studied in the context of the HPRF radar problem: low rank approximation sample matrix inversion (SMI), diagonally loaded SMI, eigencanceler, and element-space post-Doppler. These three methods are evaluated in typical HPRF radar scenarios and for various training conditions, including when the target is present in the training data  相似文献   

6.
The algorithm presented here provides both a constant false-alarm rate (CFAR) detection and a maximum likelihood (ML) Doppler-bearing estimator of a target in a background of unknown Gaussian noise. A target is detected, and its parameters estimated within each range gate by evaluating a statistical test for each Doppler-angle cell and by selecting the cell with maximum output and finally comparing it with a threshold. Its CFAR performance is analyzed by the use of the sample matrix inversion (SMI) method and is evaluated in the cases of a fully adaptive space-time adaptive processing (STAP) and two partially adaptive STAPs. The performances of these criteria show that the probability of detection is a function only of the sample size K used to estimate the covariance matrix and a generalized signal-to-noise ratio. The choice of the number K is a tradeoff between performance and computational complexity. The performance curves demonstrate that the finer the resolution is, the poorer the detection capability. That means that one can trade off the accuracy of ML estimation with the performance of the CFAR detection criterion  相似文献   

7.
Many practical problems arise when implementing digital terrain data in airborne knowledge-aided (KA) space-time adaptive processing (STAP). This paper addresses these issues and presents solutions with numerical implementations. In particular, using digital land classification data and digital elevation data, techniques are developed for registering these data with radar return signals, correcting for Doppler and spatial misalignments, adjusting for antenna gain, characterizing clutter patches for secondary data selection, and ensuring independent secondary data samples. These techniques are applied to select secondary data for a single-bin post-Doppler STAP algorithm using multi-channel airborne radar measurement (MCARM) program data. Results with the KA approach are compared with those obtained using the standard sliding window method for choosing secondary data. These results illustrate the benefits of using terrain information, a priori data about the radar, and the importance of statistical independence when selecting secondary data for improving STAP performance  相似文献   

8.
Reiterative median cascaded canceler for robust adaptive array processing   总被引:1,自引:0,他引:1  
A new robust adaptive processor based on reiterative application of the median cascaded canceler (MCC) is presented and called the reiterative median cascaded canceler (RMCC). It is shown that the RMCC processor is a robust replacement for the sample matrix inversion (SMI) adaptive processor and for its equivalent implementations. The MCC, though a robust adaptive processor, has a convergence rate that is dependent on the rank of the input interference-plus-noise covariance matrix for a given number of adaptive degrees of freedom (DOF), N. In contrast, the RMCC, using identical training data as the MCC, exhibits the highly desirable combination of: 1) convergence-robustness to outliers/targets in adaptive weight training data, like the MCC, and 2) fast convergence performance that is independent of the input interference-plus-noise covariance matrix, unlike the MCC. For a number of representative examples, the RMCC is shown to converge using ~ 2.8N samples for any interference rank value as compared with ~ 2N samples for the SMI algorithm. However, the SMI algorithm requires considerably more samples to converge in the presence of outliers/targets, whereas the RMCC does not. Both simulated data as well as measured airborne radar data from the multichannel airborne radar measurements (MCARM) space-time adaptive processing (STAP) database are used to illustrate performance improvements over SMI methods.  相似文献   

9.
By exploring the covariance structure information to reduce the uncertainty in adaptive processing, a persymmetric generalized likelihood ratio algorithm (PGLR) is developed together with the closed-form expressions of probabilities of detection and false alarm. This multiband algorithm, which requires less computation, can significantly outperform the corresponding unstructured multiband GLR algorithm, especially in a severely nonstationary and/or nonhomogeneous interference environment. Simulation shows that the constant false alarm rate (CFAR) performance of the new algorithm is as insensitive as that of the unstructured multiband GLR to the departure of interference distribution from Gaussian  相似文献   

10.
The modified generalized sign test processor is a nonparametric, adaptive detector for 2-D search radars. The detector ranks a sample under test with its neighboring samples and integrates (on a pulse-to-pulse basis) the ranks with a two-pole filter. A target is declared when the integrated output exceeds two thresholds. The first threshold is fixed and yields a 10-6 probability of false alarm when the neighboring samples are independent and identically distributed. The second threshold is adaptive and maintains a low false-alarm rate when the integrated neighboring samples are correlated and when there are nonhomogeneities, such as extraneous targets, in the neighboring cells. Using Monte Carlo techniques, probability of false-alarm results, probability of detection curves, and angular accuracy curves have been generated for this detector. The detector was built and PPI photographs are used to indicate the detector's performance when the radar is operated over land clutter.  相似文献   

11.
理论分析表明,独立高斯噪声经过正交小波变换后保持方差和独立性不变。基于Mallat的小波多分辨分析,通过对小波系数进行平方律处理,建立了基于正交小波变换的恒虚警率检测器模型,推导了相应的虚警和检测概率公式,分析了噪声未知情况下小波系数序列长度对检测性能的影响,并给出了合适的长度值。实验结果表明,所提出的检测器能满足不同虚警概率和杂波背景的要求,具有较好自适应性。  相似文献   

12.
一种全自动的检测方法用于SAR-ATI的GMTI   总被引:4,自引:0,他引:4  
针对星载SAR-ATI处理的中间结果,提出了一种称为"两步-类高斯拟合"完全自适应的检测方法。该方法可以完全自动地实现杂波和噪声中的运动目标检测,避免了传统方法作联合高斯数据的假定,无须推导SAR-ATI干涉图的理论概率密度函数。此外,该方法还可以大大降低系统的虚警概率并用仿真研究了最小可检测速度。  相似文献   

13.
A constant false alarm rate (CFAR) detection method which is based on a combination of median and morphological filters (MEMO) is proposed. The MEMO algorithm has robust performance with small CFAR loss, very good behavior at clutter edges and high detection performance in the case of closely spaced narrowband signals (targets). The proposed MEMO method is favourably compared with cell averaging (CA) and ordered statistics (OS) CFAR detectors. The Monte Carlo method is employed to analyze the MEMO-CFAR detector  相似文献   

14.
Time diversity transmission is often used to circumvent the high probability of a deep fade on a single transmission which may result in loss of the signal. One way to combat deep fades is to postdetection integrate the received observations from each range resolution cell. The false alarm rate of the postdetection integrator (PI) is extremely sensitive to randomly arriving impulse interference. Such interfering pulses may be unintentionally generated by nearby radars or intentionally generated by pulse jammers seeking to destroy the visibility of the radar. The binary integrator (PI) which uses an M-out-of-L decision rule is insensitive to at most M-1 interfering pulses. We consider the adaptive implementation of the PI and BI detectors for constant false alarm rate (CFAR) operation. We show that the CFAR BI detector when the “AND” (L-out-of-L) decision rule is used exhibits more robust false alarm control properties in the presence of impulse interference at the expense of severe detection loss when no interference is present. The CFAR adaptive PI (API) detector is proposed to alleviate this problem. The CFAR API detector implements an adaptive censoring algorithm which determines and censors with high probability the interference samples thereby achieving robust false alarm control in the presence of interference and optimum detection performance in the absence of interference  相似文献   

15.
A partially adaptive array is one in which elements of a phased array are controlled or adaptively weighted in groups or in which certain elements, called auxiliary elements, are made controllable. Mathematically, this type of array is formed by transforming all of the elements of an array by a nonsquare matrix such that the resulting output vector has a length less than the number of array elements. It is shown that there is an equivalent matrix transform that can effectively be utilized in analyzing the partially adaptive array's performance when a small number of external jammers are present. Processor implementation and convergence rate considerations lead to the desirability of reducing the dimensionality of the cancellation processor while maintaining good sidelobe interference protection. A meaningful measure of canceller performance is to compute the optimal output signal-to-noise ratio. This expression is a function of the jammer, direction-of-arrival vectors (DOAVs), jammer powers, the array steering vector, and internal noise. It is shown that if this expression is computed for the fully adaptive array then it is easily computed for the partially adaptive array by transforming the jammer DOAVs and the steering vector by the orthogonal projection matrix defined by the rows of the subarray transformation matrix and substituting these vectors back into the original expression for the fully adaptive array  相似文献   

16.
The probability of detection for radars employing noncoherent integration and a fixed threshold or cell-averaging constant false alarm rate (CA-CFAR) processor is computed by numerical contour integration in the complex plane. The technique is applied to both nonfluctuating and chi-squared fluctuating targets. A bound on the truncation error allows for a simple stopping rule for the numerical integration. The method has applicability to many problems in radar detection theory.  相似文献   

17.
The effect of mutual coupling on the performance of space-time adaptive processing (STAP) antenna arrays is investigated. A signal model that includes the effects of mutual coupling is derived and used to compute the optimum solution for the fully adaptive and a variety of partially adaptive algorithms. The simulations indicate that if the mutual coupling is not properly accounted for there is significant degradation of the signal-to-interference-plus-noise ratio (SINR). In addition, the clutter notch is widened resulting in a larger minimum detectable velocity (MDV) of the target. When the mutual coupling is properly accounted for, the performance can be restored to the ideal level. However, STAP algorithms, in general, are very sensitive to errors in the mutual coupling matrix, requiring a very complete knowledge of this matrix for good performance. Of all the algorithms considered here, beam space algorithms appear to be the most robust with respect to uncertainties in the mutual coupling matrix  相似文献   

18.
Airborne/spacebased radar STAP using a structured covariance matrix   总被引:5,自引:0,他引:5  
It is shown that partial information about the airborne/spacebased (A/S) clutter covariance matrix (CCM) can be used effectively to significantly enhance the convergence performance of a block-processed space/time adaptive processor (STAP) in a clutter and jamming environment. The partial knowledge of the CCM is based upon the simplified general clutter model (GCM) which has been developed by the airborne radar community. A priori knowledge of parameters which should be readily measurable (but not necessarily accurate) by the radar platform associated with this model is assumed. The GCM generates an assumed CCM. The assumed CCM along with exact knowledge of the thermal noise covariance matrix is used to form a maximum likelihood estimate (MLE) of the unknown interference covariance matrix which is used by the STAP. The new algorithm that employs the a priori clutter and thermal noise covariance information is evaluated using two clutter models: 1) a mismatched GCM, and 2) the high-fidelity Research Laboratory STAP clutter model. For both clutter models, the new algorithm performed significantly better (i.e., converged faster) than the sample matrix inversion (SMI) and fast maximum likelihood (FML) STAP algorithms, the latter of which uses only information about the thermal noise covariance matrix.  相似文献   

19.
Coherent signal detection in non-Gaussian interference is presently of interest in adaptive array applications. Conventional array detection algorithms inherently model the interference with a multivariate Gaussian random vector. However, non-Gaussian interference models are also under investigation for applications where the Gaussian assumption may not be appropriate. We analyze the performance of an adaptive array receiver for signal detection in interference modeled with a non-Gaussian distribution referred to as a spherically invariant random vector (SIRV). We first motivate this interference model with results from radar clutter measurements collected in the Mountain Top Program. Then we develop analytical expressions for the probability of false alarm and the probability of detection for the adaptive array receiver. Our analysis shows that the receiver has constant false alarm rate (CFAR) performance with respect to all the interference parameters. Some illustrative examples are included that compare the detection performance of this CFAR receiver with a receiver that has prior knowledge of the interference parameters  相似文献   

20.
Optimal polarimetric processing for enhanced target detection   总被引:3,自引:0,他引:3  
The results of a study of several polarimetric target detection algorithms are summarized. The algorithms were tested using real target-in-clutter data collected by the Lincoln Laboratory 35 GHz synthetic aperture radar (SAR) sensor. Fully polarimetric measurements (HH, HV, VV) are processed into intensity imagery using adaptive and nonadaptive polarimetric whitening filters (PWFs). Then a two-parameter constant false alarm rate (CFAR) detector is run over the imagery to detect the targets. Nonadaptive PWF processed imagery is shown to provide better protection performance than either adaptive PWF processed imagery or single-polarimetric-channel HH imagery. In addition, nonadaptive PWF processed imagery is shown to be visually clearer than adaptive processed imagery  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号