首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
为了观测遥远的天体,天文学家必须要研制能检测出极其微弱的天体射电信号的望远镜。全世界所有的射电望远镜在60年中所收信到所有天体射电源的能量仅仅相当于几个雨滴撞击地面所释放的能量。  相似文献   

2.
20世纪30年代,一位无线电工程师无意当中发现了来自宇宙的无线电渡(天文学家称之为射电波),几年以后,另一位无线电工程师发明了专门用于接收和研究天体射电波的射电望远镜,从而揭开了天文学一个重要分支——射电天文学的序幕。虽然射电天文学诞生至今仅仅不足80年的历史,但是却得到了异常迅猛的发展.  相似文献   

3.
世界上最大的单口径射电望远镜FAST已经完成验收并正式运行,而甚长基线干涉观测是FAST的核心课题之一,FAST可以为甚长基线观测网提供重要贡献。为了发挥FAST在甚长干涉观测网中的作用,总结了国际上其他大型射电望远镜的主要研究成果,结合FAST的特点,挑选适合FAST的研究课题;介绍了FAST现有的VLBI观测系统,和天马望远镜进行的VLBI干涉条纹;讨论了FAST VLBI系统的发展,包括未来适合FAST参与的VLBI观测网。研究最终挑选到了适合FAST VLBI的6个研究课题;应用FAST与天马望远镜获得了首条VLBI干涉条纹;FAST在CVN、EVN、LBA的VLBI观测方面,可发挥其极高灵敏度的优势;研究发现附近的小天线可为FAST参加相位参考观测提供帮助。  相似文献   

4.
宇宙的难题     
宇宙的难题周晓珊射电脉冲星之谜1972年,英国射电天文学家在天鹅星座区内发现了一颗例行射电脉冲星,它被列入了天文目录中并被命名为G-P-1953。1968年发现的第一颗射电脉冲星,是一个宇宙天体,它是异常稳定的无线电辐射的源泉。这种辐射的脉冲非常准确...  相似文献   

5.
高精度VLBI技术在深空探测中的应用   总被引:1,自引:1,他引:0  
介绍了适合单探测器测定轨的高精度VLBI技术和适合多探测器测定位的同波束VLBI技术的研究进展。利用"嫦娥3号"着陆器的ΔDOR型VLBI观测,得到了误差0.67ns的VLBI群时延数据。利用"嫦娥3号"着陆器和月球车的同波束VLBI观测,得到了随机误差0.3ps的差分相时延数据,以数厘米的灵敏度监测出月球车的移动、转弯等动作,并把月球车的相对定位精度提高至1m。针对深空探测,提出了使VLBI时延测量精度进一步提高所需要开展的部分研究内容。  相似文献   

6.
目前已有空间探测器对太阳的甚低频射电爆发进行的探测主要是频谱观测,针对太阳低频射电爆发的成像观测仍然是空白,利用空间矢量天线可以对太阳低频射电爆发(包括Ⅱ型和Ⅲ型暴)进行空间定位和一定的成像观测.研究针对空间(甚)低频射电探测器对太阳射电爆发的探测,提出了利用三极子矢量天线对太阳爆发进行定位的算法;基于部分空间甚低频设...  相似文献   

7.
张懿珺 《国际太空》2023,(10):42-47
<正>面对近地天体撞击地球这种关乎全人类命运的共同威胁,近地天体观测与提前预警是开展近地天体防御、保护地球家园的前提,然而,目前近地天体观测面临观测网络无法覆盖全天区、天体编目率低的现实困境。国际合作在解决近地天体观测的现实困境中具有必要性与重要意义,其一方面有利于实现地基望远镜与天基观测系统的互补,另一方面为天体防御手段的选择提供了空间。开展近地天体观测国际合作有两种具体路径,其一为通过国际合作构建地基-天基联合观测系统,其二为建立近地天体观测数据共享机制。  相似文献   

8.
月球具有足够大的尺寸,能够有效地遮挡来自地球的低频电磁波干扰,因此月球背面是进行低频射电天文观测的最佳场所。本文论述了利用低频射电频谱仪在月球背面进行空间低频射电天文观测的意义,给出了低频射电频谱仪工作原理、科学探测目标和系统组成。研究了低频射电频谱仪的设计,并采用低频射电频谱仪对北京中关村地区空中低频电磁波辐射频谱进行了试验探测,结果表明:低频射电频谱仪能够清晰地探测到0.1~40 MHz频带内的广播电台及授时台等发射的低频电磁波信号。  相似文献   

9.
针对地球静止轨道(GEO)卫星全天时全天候高精度的监测需求,考虑传统甚长基线干涉(VLBI)测站高成本、高投入和GEO卫星专用观测时段有限等制约条件,研发了简易型VLBI观测系统,并组建了包括上海、都匀和乌鲁木齐三站的微型VLBI网(micro VLBI network,MVN),开展了并置站测试以及对GEO卫星亚太6C的连续监测,并评估了当前MVN的观测能力。结果表明MVN扣除系统差后的单站接收精度为2ns,各基线观测时延拟后残差约几纳秒,GEO目标实测位置精度为百米级(内外符精度分别约100m和400m)。不同于传统VLBI和其他GEO监测手段,MVN还具备全天时、全天候、低造价、易布设及易推广等特点,充分表明了其在GEO卫星监测领域的应用价值。  相似文献   

10.
宇宙探索     
四、红外和紫外望远镜 红外望远镜 红外望远镜接收红外线探测宇宙. 红外线是可见光波长较长的红端之外到毫米波射电波之间的电磁辐射光谱.宇宙中所有温度低于3000℃、高于-250℃的物体都发射红外线,因此,使用红外望远镜可以观测到温度从3000℃到-250℃的幼年恒星、褐矮星和行星等天体,以及星际尘埃物质和亚毫米波辐射等.  相似文献   

11.
针对"嫦娥5号"(CE-5)探测器间高精度相对测量需求,设计了我国深空干涉测量处理中心框架下的同波束VLBI处理算法,分析了X波段同波束VLBI相位解模糊条件和结果;通过引入群时延辅助的相位干涉技术,大幅抑制了干涉时延随机误差,为同波束VLBI中相位解模糊提供了先验条件;利用CE-5对接实测数据验证了本文工作的有效性,为CE-5任务同波束VLBI的实施奠定了基础。  相似文献   

12.
Tropospheric delay is one of the major sources of error in VLBI (Very Long Baseline Interferometry) analysis. The principal component of this error can be accurately computed through reliable surface pressure data —hydrostatic delay— yet there is also a small but volatile component —wet delay— which is difficult to be modelled a priori. In VLBI analysis, troposphere delay is typically modelled in the theoretical delays using Zenith Hydrostatic Delays (ZHD) and a dry mapping function. Zenith Wet Delay (ZWD) is not modelled but estimated in the analysis process. This work studies inter alia the impact of including external GNSS estimates to model a priori ZWD in VLBI analysis, as well as other models of a priori ZWD.In a first stage, two different sources of GNSS troposphere products are compared to VLBI troposphere estimates in a period of 5 years. The solution with the best agreement to VLBI results is injected in the VLBI analysis as a priori ZWD value and is compared to other options to model a priori ZWD. The dataset used for this empirical analysis consists of the six CONT campaigns.It has been found that modelling a priori ZWD has no significant impact either on baseline length and coordinates repeatabilities. Nevertheless, modelling a priori ZWD can change the magnitude of the estimated coordinates a few millimeters in the up component with respect to the non-modelling approach. In addition, the influence of a priori ZWD on Earth Orientation Parameters (EOP) and troposphere estimates —Zenith Total Delays (ZTD) and gradients—has also been analysed, resulting in a small but significant impact on both geodetic products.  相似文献   

13.
In this paper we present results assessing the role of Very Long Baseline Interferometry (VLBI) tracking data through precision orbit determination (POD) during the check-out phase for Chang’E-1, and the lunar gravity field solution CEGM-01 based on the orbital tracking data acquired during the nominal phase of the mission. The POD of Chang’E-1 is performed using S-band two-way Range and Range Rate (R&RR) data, together with VLBI delay and delay rate observations. The role of the VLBI data in the POD of Chang’E-1 is analyzed, and the resulting orbital accuracies are estimated for different solution strategies. The final orbital accuracies proved that the VLBI tracking data can improve the Chang’E-1 POD significantly. Consequently, CEGM-01 based on six-month tracking data during Chang’E-1 nominal mission phase is presented, and the accuracy of the model is assessed by means of the gravity field power spectrum, admittance and coherence between gravity and topography, lunar surface gravity anomaly and POD for both Chang’E-1 and Lunar Prospector (LP). Our analysis indicates that CEGM-01 has significant improvements over a prior model (i.e. GLGM-2), and shows the potential of Chang’E-1 tracking data in high resolution lunar gravity field model solution by combining with SELENE and LP tracking data.  相似文献   

14.
Within the analysis of space geodetic observations, errors of the applied subdaily Earth rotation model can induce systematic effects in different estimated parameters. In this paper, we focus on the impact of the subdaily Universal Time (UT1) model on the celestial pole offsets (CPO) estimated from very long baseline interferometry (VLBI) observations. We provide a mechanism that describes the error propagation from the subdaily UT1 into the daily CPO.In typical 24-h VLBI sessions the observed quasars are well distributed over the sky. But the observations, if looked at from the Earth-fixed frame, are not homogeneously distributed. The amount of observations performed in different terrestrial directions shows an irregularity which can be roughly compared to the case where the observations are collected in only one Earth-fixed direction. This peculiarity leads to artefacts in VLBI solutions, producing a correlation between the subdaily variations in UT1 and the position of the celestial pole. As a result errors in diurnal terms of the subdaily UT1 model are partly compensated by the estimated CPO. We compute for each 24-h VLBI session from 1990 until 2011 the theoretical response of the CPO to an error in the subdaily UT1 by setting up a least-squares adjustment model and using as input the coordinates of the observed quasars and observation epochs. Then real observed response of the estimated CPO derived from the VLBI session solutions is compared to the predicted one. A very good agreement between the CPO values estimated from VLBI and the predicted values was achieved. The presented model of error propagation from the subdaily UT1 into the daily CPO allows to predict and explain the behaviour of CPO estimates of VLBI solutions computed with different subdaily Earth rotation models, what can be helpful for testing the accuracy of different subdaily tidal models.  相似文献   

15.
Extracting the group and phase delays of interferometric observations produced in the Very Long Baseline Interferometry (VLBI) measurement concept requires a special fringe fitting and delay search algorithm for the recorded bandwidth. While fringe fitting is in use routinely for several megahertz wide channels in geodetic and astrometric VLBI with quasar observations, fringe fitting for artificial tones of very small bandwidth of artificial signals for Differential One-way Ranging (DOR) requires a different way of handling. In a project called Observing the Chang’E-3 Lander with VLBI (OCEL), the DOR tones emitted by the Chang’E-3 lander were observed in a standard geodetic VLBI mode with 8 or 4?MHz wide channels to maintain compatibility with the corresponding quasar observations. For these observations, we modified the existing fringe fitting program of the Haystack Observatory Processing Software (HOPS), fourfit, to properly handle narrow band DOR tones. The main motivations are that through this modification, the data of quasars and artificial radio sources can be processed in the existing geodetic analysis pipeline, and that the algorithm can be used for similar projects as well. In this paper, we describe the algorithm and show that the new algorithm produces much more reliable group delay results than using the standard fourfit algorithm. This is done by a simulation test and in particular by processing of real observations. It is shown that in many cases, systematic deviations of several nanoseconds, which are seen with the standard fourfit algorithm, can be avoided. The ultimate benefit of the new procedure is demonstrated by reducing the errors in delay triangle closures by at least a factor of 3, which, in the OCEL case, is from ~300 to ~100?ps.  相似文献   

16.
我国将于2020年首次发射由环绕器和着陆巡视器组成的火星探测器,火星探测器的跟踪及精密测定轨是完成工程任务和科学探测的基础。火星探测器的跟踪和测定轨,目前主要采用基于地面无线电测量的测距、测速和甚长基线干涉VLBI测角3种手段。主要针对VLBI技术予以介绍,主要内容为:△DOR型VLBI技术在国内外的应用情况、火星探测器VLBI测定轨技术分析、基于同波束VLBI的火星车定位技术、火星探测器VLBI观测等。这些内容对我国的火星探测器测定轨有重要的应用价值。  相似文献   

17.
High accuracy differenced phase delay can be obtained by observing multiple point frequencies of two spacecraft using the same beam Very Long Baseline Interferometry (VLBI) technology. Its contribution in lunar spacecraft precision orbit determination has been performed during the Japanese lunar exploration mission SELENE. In consideration that there will be an orbiter and a return capsule flying around the moon during the Chinese lunar exploration future mission Chang’E-3, the contributions of the same beam VLBI in spacecraft precision orbit determination and lunar gravity field solution have been investigated. Our results show that the accuracy of precision orbit determination can be improved more than one order of magnitude after including the same beam VLBI measurements. There are significant improvements in accuracy of low and medium degree coefficients of lunar gravity field model obtained from combination of two way range and Doppler and the same beam VLBI measurements than the one that only uses two way range and Doppler data, and the accuracy of precision orbit determination can reach meter level.  相似文献   

18.
The APOD (Atmospheric density detection and Precise Orbit Determination) is the first LEO (Low Earth Orbit) satellite in orbit co-located with a dual-frequency GNSS (GPS/BD) receiver, an SLR reflector, and a VLBI X/S dual band beacon. From the overlap statistics between consecutive solution arcs and the independent validation by SLR measurements, the orbit position deviation was below 10?cm before the on-board GNSS receiver got partially operational. In this paper, the focus is on the VLBI observations to the LEO satellite from multiple geodetic VLBI radio telescopes, since this is the first implementation of a dedicated VLBI transmitter in low Earth orbit. The practical problems of tracking a fast moving spacecraft with current VLBI ground infrastructure were solved and strong interferometric fringes were obtained by cross-correlation of APOD carrier and DOR (Differential One-way Ranging) signals. The precision in X-band time delay derived from 0.1?s integration time of the correlator output is on the level of 0.1?ns. The APOD observations demonstrate encouraging prospects of co-location of multiple space geodetic techniques in space, as a first prototype.  相似文献   

19.
Next-generation Very Long Baseline Interferometry (VLBI) system designs are aiming at 1 mm global position accuracy. In order to achieve this, it is not only necessary to deploy improved VLBI systems, but also to develop analysis strategies that take full advantage of the observations taken. Since the new systems are expected to incorporate four independent radio frequency bands, it should be feasible to resolve phase ambiguities directly from post-correlation data, providing roughly an order of magnitude improvement in precision of the delay observable. As the unknown ambiguities are of integer nature, it is discussed here how they the can be resolved analytically using algorithms which have been developed for Global Navigation Satellite System (GNSS) applications. Furthermore, it will be shown that ionosphere contribution and source structure effects, so-called core-shifts, can be solved simultaneously with the delay, which is the main geodetic observable for follow-on analysis. In order to verify the proposed algorithm, simulated observations were created using parameters from actual design studies. It is shown that, even in the case of low signal-to-noise ratio observations, reliable phase ambiguity resolution can be achieved and it is discussed how the integer ambiguity recovery depends on the number of observations and signal-to-noise ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号