首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
塞式喷管在固体火箭发动机上的应用研究   总被引:3,自引:0,他引:3  
王长辉  刘宇 《固体火箭技术》2005,28(1):36-39,56
针对固体火箭发动机要求,比较了3种可能的环排塞式喷管结构形式,认为环排瓦状塞式喷管是目前最可行的方案。以高空工作的固体发动机喷管为例,设计了一个8单元环排瓦状塞式喷管和与其对比用的钟形喷管,在相同尺寸限制奈件下,塞式喷管的面积比大大高于钟形喷管。通过数值模拟的方法对设计的环排瓦状塞式喷管的流场和性能进行了研究,分析了不同反压下塞锥流场特点和塞锥表面的压强分布。计算结果表明,塞式喷管在设计点效率为97.41%时,其真空效率为78.63%。这比对比用钟形喷管的一维理想真空效率高出近2.0%。  相似文献   

2.
针对可应用于固体火箭发动机的3种环状塞式喷管构型,采用有限体积法进行计算,通过流场结构分析和性能比较,表明单元间隙较小的多单元环簇型塞式喷管在整个飞行高度下均具有较高的推力效率,适合作为固体火箭发动机用塞式喷管的基本构型.在此基础上,采用颗粒轨道模型模拟了20单元环簇型塞式喷管的两相流场,由于颗粒的存在使得两相流场较纯...  相似文献   

3.
为满足高性能导弹推进系统需求,提高固体火箭发动机推力矢量调节性能,综合塞式喷管高度补偿和结构功能一体化的特点,设计了一套环喉型固体塞式喷管。该喷管由小喷管膨胀段和中心塞锥组成,通过移动小喷管膨胀唇部的位置,改变喉部面积大小,实现推力可调,采用数值模拟方法预估了其推力性能。对塞式喷管进行了地面冷流试验,测定了其推力性能。结果表明:环喉型塞式喷管推力性能的数值模拟结果与试验结果相吻合。当塞式喷管喉部面积满足0.7倍变化时,可实现塞式喷管推力4∶1的调节变化,同时具有明显的高度补偿效应。未来可进一步优化内喷管设计,使其广泛适用于全空领域导弹动力系统,提高发动机性能。  相似文献   

4.
塞式喷管单元发动机实验与数值模拟研究   总被引:2,自引:0,他引:2  
简要介绍固体推进剂模拟塞式喷管单元发动机实验系统,给出了实验塞式喷管型面设计方法和特征线法在塞式喷管流场计算中的应用,癖结了实验研究结果,并同数值模拟计算结果进行了比较,主要结果包括燃烧室压力,底部气锥流量,内膨胀比,侧喷管倾角,底部压缩角等对塞式喷管性能的影响,并得出了塞式喷管单元发动机推力方向与其轴线方向夹角的高度特性。  相似文献   

5.
塞式喷管性能的数值模拟与实验验证   总被引:2,自引:1,他引:2  
通过特征线法在塞式喷管中的应用,研究了塞式喷管主要结构参数对其性能的影响,同时,研究了塞式喷管的高度特性,最后还对塞式喷管合推力与发动机轴向夹角的高度特性进行了研究和分析。理论研究结果得到了实验的验证。其结果可用于塞式喷管的设计。  相似文献   

6.
琚春光  刘宇 《宇航学报》2006,27(5):849-853
采用理论分析的方法并结合塞式喷管的结构特点,建立塞式喷管壁面的的压力分布模型,对全长型、截短型以及考虑底部推力、底部二次流等情况下的塞式喷管发动机进行了性能预示,并同试验结果进行了对比分析。分析结果表明,塞式喷管发动机的性能预示结果同试验结果吻合较好,验证了预示模型的可行性,但是在某些工作压比下,预测值与试验值之间还有一定程度的差异,塞式喷管发动机的性能预示模型还有待进一步的完善。  相似文献   

7.
通过流场数值仿真计算方法对环喉型塞式喷管进行了研究,对比计算了不同外流条件下塞式喷管的流场结构和性能.分析表明该塞式喷管的结构方案独特,具有稳定的高空高速性能,与传统的钟型喷管相比低空性能更优异.  相似文献   

8.
针对外流参数对固体塞式喷管发动机性能的影响,基于防空导弹外形,设计了环喉型塞式喷管结构,建立了包含外流场的三维数值仿真模型,开展了3个工作高度下不同来流马赫数和来流迎角的模拟计算。结果表明:在一定的飞行高度下,外流对塞式喷管尾流产生压缩作用,主要造成导弹底部阻力增大,塞锥壁面压强降低。低空下,来流马赫数越大,喷管性能损失越大。来流迎角对塞式喷管性能的影响程度较小,损失不超过1%。对比锥形喷管,环形塞式喷管在从地面到高空的飞行高度范围内,整体效率都保持了较高的数值,尤其是地面工况的喷管效率可提高约5%。  相似文献   

9.
全面介绍了多个塞式喷管的热流实验研究。实验获得了固体推进剂、气氧/酒精及气氧/气氢三种推进剂组合塞式喷管的热试车性能。实验塞式喷管包括了瓦状塞锥和平板塞锥等两种塞锥形式。实验结果表明,塞式喷管特别适合用于飞行高度范围跨度大的固体或液体火箭发动机。气氧/酒精瓦状直锥塞式喷管热试车的效率达到了95%,验证了瓦状塞式喷管的高度补偿特性。一单元塞式喷管和单侧三单元塞式喷管气氢/气氧发动机热试实验成功进行了爆震波多管点火。一单元塞式喷管发动机在CNPR=110附近,效率达到93%~95%;在CNPR=450附近,效率达到96%~98%;在CNPR=1000附近,效率达到93%~96%。单侧三单元塞式喷管发动机在CNPR=50附近,效率达到92%~93.5%;在CNPR=350附近,效率达到95%~96%,预计在设计点的效率不低于98%。  相似文献   

10.
王一白  覃粒子  刘宇  廖云飞  王长辉 《宇航学报》2006,27(5):843-848,891
提出了圆转方塞式喷管的内喷管和塞锥型面的设计方法,内喷管用圆弧和抛物线近似,塞锥型面用抛物线和三次曲线近似,设计了一单元圆转方塞式喷管试验发动机。并采用气氧作氧化剂,气氢作燃料,进行了点火热试研究。介绍了试验发动机的结构与设计参数,以及试验系统组成和点火方式,给出了试验发动机照片、试验结果照片、测量参数曲线和性能数据处理。试验结果表明,试验发动机具有较高的热试效率:在三个不同工作高度下,喷管推力系数效率在93%-98%之间,说明圆转方塞式喷管的型面设计和试验方法是可行的。  相似文献   

11.
根据不同推进剂及目前热防护材料的性能特点,采用了一种组合药柱的新方法,用来降低喷管内表面的温度和烧蚀率。该方法的主要设计思路是将药柱形式分为前后两段,靠近发动机头部段使用高能推进剂,靠近喷管段使用低燃温推进剂。低燃温推进剂占总推进剂质量百分比的很少一部分。使用这样的组合药柱形式,低燃温推进剂燃烧产生的气体会在喷管内表面形成一层低温帘幕,从而降低喷管内表面的温度和烧蚀率,使高能推进剂在固体火箭发动机设计上得到应用,并有助于提高发动机的质量比。  相似文献   

12.
塞式喷管流场变化对性能的影响   总被引:2,自引:0,他引:2  
为了更清楚塞式喷管的注以动机理以便合理的设计塞式喷管,本文从N-S方程出发,采用NND格式对塞式喷管的流场进行了数值模拟。重点研究了塞式喷管在高低空注以场的发展和外流对塞锥流场及其性能的影响。研究表明,在设计高度以下,塞式喷管的高度补偿作用很在,并且外流对塞式喷管影响很大,而在设计高度以上,塞式喷管的补偿作用消失,而外流的影响同样可以忽视。  相似文献   

13.
两相流环缝塞式喷管理想型面的设计方法   总被引:1,自引:0,他引:1  
目前固体火箭发动机塞式喷管没有成熟的理论设计方法,设计方法需考虑两相流因素和极限粒子流线的几何约束。在常滞后两相流假设下提出改进的Angelino理想型面法设计两相流环缝塞式喷管,证明了常滞后两相流中的普朗特-迈耶函数关系式,并给出了最终设计公式。用F luent软件计算了改进法设计的喷管型面性能。算例结果表明,与未考虑两相流效应的纯气相理想型面相比,该法设计的型面长度缩短近33%,推力增大约1%,证明了提出常滞后两相流假设的合理性及改进法设计两相流环缝塞式喷管的有效性。  相似文献   

14.
根据同一推进剂不同结构的两种型号发动机的试验结果,分析了喷管内型面烧蚀对发动机能量影响,提出了在两种烧蚀率相差较大的材料之间镶嵌一种烧蚀率适中的材料,可减少喷管内型面的烧蚀,提高喷管推力效率。  相似文献   

15.
为了了解差分流量调节实现推力矢量控制的特点,参考塞式喷管发动机XRS 2200的工作参数,对多单元直排型塞式喷管模型发动机进行了数值计算。介绍了差分流量调节的计算方法和内喷管与塞锥推力矢量变化的分析过程,计算产生的俯仰力矩。结果表明,差分流量调节时,塞式喷管轴向合力基本保持不变,不损失轴向推力性能;俯仰力矩包括轴向力和侧向力产生的两部分力矩,随差分流量调节增大而增加,有很好的偏转性能。结论可以为差分流量调节的实验研究提供参考。  相似文献   

16.
小型固体火箭发动机尾部点火器设计方法   总被引:1,自引:0,他引:1  
以尾部点火装置安装位置为分类方法,以点火装置燃烧产物与发动机装药的不同换热方式为基础,对典型的小型固体火箭发动机的尾部点火设计方法和设计中需要重点考虑的问题作了较为全面的介绍。以某型号发动机尾部点火设计为研究对象,对点火序列设计、点火药量的估算、喷管堵片的设计方法进行了阐述。通过调整点火药量、喷管堵片设计状态,使点火压强逐步提高,解决了发动机研制初期出现的点火延迟、不点火等技术问题。  相似文献   

17.
塞式喷管冷流试验研究   总被引:1,自引:1,他引:0  
王长辉  刘宇 《火箭推进》2007,33(3):6-13
结合试验喷管和试验数据,从高度补偿特性、底部气动特性、塞锥截短对性能的影响和塞式喷管流场等四方面,讨论了塞式喷管的性能和气动特点。试验结果表明:塞式喷管高度补偿效果明显,相对钟型喷管在低于设计高度上仍具有高性能;注入一定流量的二次流有利于提高塞式喷管性能,防止底部开闭过渡时推力较大幅度突降;底部二次流的注入使底部开闭过渡点的压比值升高,底部闭合后的压强值增大;塞式喷管型面设计不理想,将在流场中产生激波,降低塞式喷管的性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号