共查询到20条相似文献,搜索用时 15 毫秒
1.
The IMAGE Extreme Ultraviolet Imager (EUV) provides our first global images of the plasmasphere by imaging the distribution of He+ in its 30.4-nm resonance line. The images reveal the details of a highly structured and dynamic entity. Comparing EUV images and selected in-situ observations has helped to validate the remote sensing measurements. The brightness in the EUV images is heavily weighted by the He+ density near the plane of the magnetic equator, but two lines of evidence emphasize that the features seen by EUV extend far from the equator, and in at least some cases reach the ionosphere. Certain features and behaviors, including shoulders, channels, notches, and plasma erosion events, appear frequently in the EUV images. These are keys to understanding the ways that electric fields in the inner magnetosphere affect the large and meso-scale distribution of plasma, and their study can elucidate the mechanisms by which the solar wind and interplanetary magnetic field couple to the inner magnetosphere. 相似文献
2.
S. B. Mende H. U. Frey K. Rider C. Chou S. E. Harris O. H. W. Siegmund S. L. England C. Wilkins W. Craig T. J. Immel P. Turin N. Darling J. Loicq P. Blain E. Syrstad B. Thompson R. Burt J. Champagne P. Sevilla S. Ellis 《Space Science Reviews》2017,212(1-2):655-696
ICON Far UltraViolet (FUV) imager contributes to the ICON science objectives by providing remote sensing measurements of the daytime and nighttime atmosphere/ionosphere. During sunlit atmospheric conditions, ICON FUV images the limb altitude profile in the shortwave (SW) band at 135.6 nm and the longwave (LW) band at 157 nm perpendicular to the satellite motion to retrieve the atmospheric O/N2 ratio. In conditions of atmospheric darkness, ICON FUV measures the 135.6 nm recombination emission of \(\mathrm{O}^{+}\) ions used to compute the nighttime ionospheric altitude distribution. ICON Far UltraViolet (FUV) imager is a Czerny–Turner design Spectrographic Imager with two exit slits and corresponding back imager cameras that produce two independent images in separate wavelength bands on two detectors. All observations will be processed as limb altitude profiles. In addition, the ionospheric 135.6 nm data will be processed as longitude and latitude spatial maps to obtain images of ion distributions around regions of equatorial spread F. The ICON FUV optic axis is pointed 20 degrees below local horizontal and has a steering mirror that allows the field of view to be steered up to 30 degrees forward and aft, to keep the local magnetic meridian in the field of view. The detectors are micro channel plate (MCP) intensified FUV tubes with the phosphor fiber-optically coupled to Charge Coupled Devices (CCDs). The dual stack MCP-s amplify the photoelectron signals to overcome the CCD noise and the rapidly scanned frames are co-added to digitally create 12-second integrated images. Digital on-board signal processing is used to compensate for geometric distortion and satellite motion and to achieve data compression. The instrument was originally aligned in visible light by using a special grating and visible cameras. Final alignment, functional and environmental testing and calibration were performed in a large vacuum chamber with a UV source. The test and calibration program showed that ICON FUV meets its design requirements and is ready to be launched on the ICON spacecraft. 相似文献
3.
4.
5.
Hawkins S. Edward Darlington E. Hugo Murchie Scott L. Peacock Keith Harris Terry J. Hersman Christopher B. Elko Michael J. Prendergast Daniel T. Ballard Benjamin W. Gold Robert E. Veverka Joseph Robinson Mark S. 《Space Science Reviews》1997,82(1-2):31-100
A multispectral imager has been developed for a rendezvous mission with the near-Earth asteroid, 433 Eros. The Multi-Spectral Imager (MSI) on the Near-Earth Asteroid Rendezvous (NEAR) spacecraft uses a five-element refractive optical telescope, has a field of view of 2.93 × 2.25°, a focal length of 167.35 mm, and has a spatial resolution of 16.1 × 9.5 m at a range of 100 km. The spectral sensitivity of the instrument spans visible to near infrared wavelengths, and was designed to provide insight into the nature and fundamental properties of asteroids and comets. Seven narrow band spectral filters were chosen to provide multicolor imaging and to make comparative studies with previous observations of S asteroids and measurements of the characteristic absorption in Fe minerals near 1 µm. An eighth filter with a much wider spectral passband will be used for optical navigation and for imaging faint objects, down to visual magnitude of +10.5. The camera has a fixed 1 Hz frame rate and the signal intensities are digitized to 12 bits. The detector, a Thomson-CSF TH7866A Charge-Coupled Device, permits electronic shuttering which effectively varies the dynamic range over an additional three orders of magnitude. Communication with the NEAR spacecraft occurs via a MIL-STD-1553 bus interface, and a high speed serial interface permits rapid transmission of images to the spacecraft solid state recorder. Onboard image processing consists of a multi-tiered data compression scheme. The instrument was extensively tested and calibrated prior to launch; some inflight calibrations have already been completed. This paper presents a detailed overview of the Multi-Spectral Imager and its objectives, design, construction, testing and calibration. 相似文献
6.
The Ionization Gauge Investigation for the Streak Mission 总被引:1,自引:0,他引:1
J. H. Clemmons L. M. Friesen N. Katz M. Ben-Ami Y. Dotan R. L. Bishop 《Space Science Reviews》2009,145(3-4):263-283
7.
Dennis C. Reuter S. Alan Stern John Scherrer Donald E. Jennings James W. Baer John Hanley Lisa Hardaway Allen Lunsford Stuart McMuldroch Jeffrey Moore Cathy Olkin Robert Parizek Harold Reitsma Derek Sabatke John Spencer John Stone Henry Throop Jeffrey Van Cleve Gerald E. Weigle Leslie A. Young 《Space Science Reviews》2008,140(1-4):129-154
The New Horizons instrument named Ralph is a visible/near infrared multi-spectral imager and a short wavelength infrared spectral imager. It is one of the core instruments on New Horizons, NASA’s first mission to the Pluto/Charon system and the Kuiper Belt. Ralph combines panchromatic and color imaging capabilities with SWIR imaging spectroscopy. Its primary purpose is to map the surface geology and composition of these objects, but it will also be used for atmospheric studies and to map the surface temperature. It is a compact, low-mass (10.5 kg) power efficient (7.1 W peak), and robust instrument with good sensitivity and excellent imaging characteristics. Other than a door opened once in flight, it has no moving parts. These characteristics and its high degree of redundancy make Ralph ideally suited to this long-duration flyby reconnaissance mission. 相似文献
8.
Larry W. Esposito Charles A. Barth Joshua E. Colwell George M. Lawrence William E. McClintock A. Ian F. Stewart H. Uwe Keller Axel Korth Hans Lauche Michel C. Festou Arthur L. Lane Candice J. Hansen Justin N. Maki Robert A. West Herbert Jahn Ralf Reulke Kerstin Warlich Donald E. Shemansky Yuk L. Yung 《Space Science Reviews》2004,115(1-4):299-361
The Cassini Ultraviolet Imaging Spectrograph (UVIS) is part of the remote sensing payload of the Cassini orbiter spacecraft. UVIS has two spectrographic channels that provide images and spectra covering the ranges from 56 to 118 nm and 110 to 190 nm. A third optical path with a solar blind CsI photocathode is used for high signal-to-noise-ratio stellar occultations by rings and atmospheres. A separate Hydrogen Deuterium Absorption Cell measures the relative abundance of deuterium and hydrogen from their Lyman-α emission. The UVIS science objectives include investigation of the chemistry, aerosols, clouds, and energy balance of the Titan and Saturn atmospheres; neutrals in the Saturn magnetosphere; the deuterium-to-hydrogen (D/H) ratio for Titan and Saturn; icy satellite surface properties; and the structure and evolution of Saturn’s rings.This revised version was published online in July 2005 with a corrected cover date. 相似文献
9.
Farzad Kamalabadi Jianqi Qin Brian J. Harding Dimitrios Iliou Jonathan J. Makela R. R. Meier Scott L. England Harald U. Frey Stephen B. Mende Thomas J. Immel 《Space Science Reviews》2018,214(4):70
The Ionospheric Connection Explorer (ICON) Far Ultraviolet (FUV) imager, ICON FUV, will measure altitude profiles of OI 135.6 nm emissions to infer nighttime ionospheric parameters. Accurate estimation of the ionospheric state requires the development of a comprehensive radiative transfer model from first principles to quantify the effects of physical processes on the production and transport of the 135.6 nm photons in the ionosphere including the mutual neutralization contribution as well as the effect of resonant scattering by atomic oxygen and pure absorption by oxygen molecules. This forward model is then used in conjunction with a constrained optimization algorithm to invert the anticipated ICON FUV line-of-sight integrated measurements. In this paper, we describe the connection between ICON FUV measurements and the nighttime ionosphere, along with the approach to inverting the measured emission profiles to derive the associated O+ profiles from 150–450 km in the nighttime ionosphere that directly reflect the electron density in the F-region of the ionosphere. 相似文献
10.
John Vallerga 《Space Science Reviews》1996,78(1-2):277-288
Because of the strong absorption of extreme ultraviolet radiation by hydrogen and helium, almost every observation with the Extreme Ultraviolet Explorer (EUVE) satellite is affected by the diffuse clouds of neutral gas in the local interstellar medium (LISM). This paper reviews some of the highlights of the EUVE results on the distribution and physical state of the LISM and the implications of these results with respect to the interface of the LISM and the heliosphere. The distribution of sources found with the EUVE all-sky surveys shows an enhancement in absorption toward the galactic center. Individual spectra toward nearby continuum sources provide evidence of a greater ionization of helium than hydrogen in the Local Cloud with an mean ratio of H I/He I of 14.7. The spectral distribution of the EUV stellar radiation field has been measured, which provides a lower limit to local H II and He II densities, but this radiation field alone cannot explain the local helium ionization. A combination of EUVE measurements of H I, He I, and He II columns plus the measurement of the local He I density with interplanetary probes can place constraints on the local values of the H I density outside the heliosphere to lie between 0.15 and 0.34 cm–3 while the H II density ranges between 0.0 and 0.14 cm–3. The thermal pressure (P/k = nT) of the Local Cloud is derived to be between 1700 and 2300 cm–3 K, a factor of 2 to 3 above previous estimates. 相似文献
11.
12.
The Jupiter Energetic Particle Detector Instrument (JEDI) Investigation for the Juno Mission 总被引:1,自引:0,他引:1
B. H. Mauk D. K. Haggerty S. E. Jaskulek C. E. Schlemm L. E. Brown S. A. Cooper R. S. Gurnee C. M. Hammock J. R. Hayes G. C. Ho J. C. Hutcheson A. D. Jacques S. Kerem C. K. Kim D. G. Mitchell K. S. Nelson C. P. Paranicas N. Paschalidis E. Rossano M. R. Stokes 《Space Science Reviews》2017,213(1-4):289-346
The Jupiter Energetic Particle Detector Instruments (JEDI) on the Juno Jupiter polar-orbiting, atmosphere-skimming, mission to Jupiter will coordinate with the several other space physics instruments on the Juno spacecraft to characterize and understand the space environment of Jupiter’s polar regions, and specifically to understand the generation of Jupiter’s powerful aurora. JEDI comprises 3 nearly-identical instruments and measures at minimum the energy, angle, and ion composition distributions of ions with energies from H:20 keV and O: 50 keV to >1 MeV, and the energy and angle distribution of electrons from <40 to >500 keV. Each JEDI instrument uses microchannel plates (MCP) and thin foils to measure the times of flight (TOF) of incoming ions and the pulse height associated with the interaction of ions with the foils, and it uses solid state detectors (SSD’s) to measure the total energy (E) of both the ions and the electrons. The MCP anodes and the SSD arrays are configured to determine the directions of arrivals of the incoming charged particles. The instruments also use fast triple coincidence and optimum shielding to suppress penetrating background radiation and incoming UV foreground. Here we describe the science objectives of JEDI, the science and measurement requirements, the challenges that the JEDI team had in meeting these requirements, the design and operation of the JEDI instruments, their calibrated performances, the JEDI inflight and ground operations, and the initial measurements of the JEDI instruments in interplanetary space following the Juno launch on 5 August 2011. Juno will begin its prime science operations, comprising 32 orbits with dimensions 1.1×40 RJ, in mid-2016. 相似文献
13.
L. A. Frank K. L. Ackerson J. A. Lee M. R. English G. L. Pickett 《Space Science Reviews》1992,60(1-4):283-304
The plasma instrumentation (PLS) for the Galileo Mission comprises a nested set of four spherical-plate electrostatic analyzers and three miniature, magnetic mass spectrometers. The three-dimensional velocity distributions of positive ions and electrons, separately, are determined for the energy-per-unit charge (E/Q) range of 0.9 V to 52 kV. A large fraction of the 4-steradian solid angle for charged particle velocity vectors is sampled by means of the fan-shaped field-of-view of 160°, multiple sensors, and the rotation of the spacecraft spinning section. The fields-of-view of the three mass spectrometers are respectively directed perpendicular and nearly parallel and anti-parallel to the spin axis of the spacecraft. These mass spectrometers are used to identify the composition of the positive ion plasmas, e.g., H+, O+, Na+, and S+, in the Jovian magnetosphere. The energy range of these three mass spectrometers is dependent upon the species. The maximum temporal resolutions of the instrument for determining the energy (E/Q) spectra of charged particles and mass (M/Q) composition of positive ion plasmas are 0.5 s. Three-dimensional velocity distributions of electrons and positive ions require a minimum sampling time of 20 s, which is slightly longer than the spacecraft rotation period. The two instrument microprocessors provide the capability of inflight implementation of operational modes by ground-command that are tailored for specific plasma regimes, e.g., magnetosheath, plasma sheet, cold and hot tori, and satellite wakes, and that can be improved upon as acquired knowledge increases during the tour of the Jovian magnetosphere. Because the instrument is specifically designed for measurements in the environs of Jupiter with the advantages of previous surveys with the Voyager spacecraft, first determinations of many plasma phenomena can be expected. These observational objectives include field-aligned currents, three-dimensional ion bulk flows, pickup ions from the Galilean satellites, the spatial distribution of plasmas throughout most of the magnetosphere and including the magnetotail, and ion and electron flows to and from the Jovian ionosphere. 相似文献
14.
F. Durret J. S. Kaastra J. Nevalainen T. Ohashi N. Werner 《Space Science Reviews》2008,134(1-4):51-70
An excess over the extrapolation to the extreme ultraviolet and soft X-ray ranges of the thermal emission from the hot intracluster
medium has been detected in a number of clusters of galaxies. We briefly present each of the satellites (EUVE, ROSAT PSPC
and BeppoSAX, and presently XMM-Newton, Chandra and Suzaku) and their corresponding instrumental issues, which are responsible
for the fact that this soft excess remains controversial in a number of cases. We then review the evidence for this soft X-ray
excess and discuss the possible mechanisms (thermal and non-thermal) which could be responsible for this emission. 相似文献
15.
Mars Science Laboratory Mission and Science Investigation 总被引:5,自引:0,他引:5
John P. Grotzinger Joy Crisp Ashwin R. Vasavada Robert C. Anderson Charles J. Baker Robert Barry David F. Blake Pamela Conrad Kenneth S. Edgett Bobak Ferdowski Ralf Gellert John B. Gilbert Matt Golombek Javier Gómez-Elvira Donald M. Hassler Louise Jandura Maxim Litvak Paul Mahaffy Justin Maki Michael Meyer Michael C. Malin Igor Mitrofanov John J. Simmonds David Vaniman Richard V. Welch Roger C. Wiens 《Space Science Reviews》2012,170(1-4):5-56
Scheduled to land in August of 2012, the Mars Science Laboratory (MSL) Mission was initiated to explore the habitability of Mars. This includes both modern environments as well as ancient environments recorded by the stratigraphic rock record preserved at the Gale crater landing site. The Curiosity rover has a designed lifetime of at least one Mars year (~23?months), and drive capability of at least 20?km. Curiosity’s science payload was specifically assembled to assess habitability and includes a gas chromatograph-mass spectrometer and gas analyzer that will search for organic carbon in rocks, regolith fines, and the atmosphere (SAM instrument); an x-ray diffractometer that will determine mineralogical diversity (CheMin instrument); focusable cameras that can image landscapes and rock/regolith textures in natural color (MAHLI, MARDI, and Mastcam instruments); an alpha-particle x-ray spectrometer for in situ determination of rock and soil chemistry (APXS instrument); a?laser-induced breakdown spectrometer to remotely sense the chemical composition of rocks and minerals (ChemCam instrument); an active neutron spectrometer designed to search for water in rocks/regolith (DAN instrument); a weather station to measure modern-day environmental variables (REMS instrument); and a sensor designed for continuous monitoring of background solar and cosmic radiation (RAD instrument). The various payload elements will work together to detect and study potential sampling targets with remote and in situ measurements; to acquire samples of rock, soil, and atmosphere and analyze them in onboard analytical instruments; and to observe the environment around the rover. The 155-km diameter Gale crater was chosen as Curiosity’s field site based on several attributes: an interior mountain of ancient flat-lying strata extending almost 5?km above the elevation of the landing site; the lower few hundred meters of the mountain show a progression with relative age from clay-bearing to sulfate-bearing strata, separated by an unconformity from overlying likely anhydrous strata; the landing ellipse is characterized by a mixture of alluvial fan and high thermal inertia/high albedo stratified deposits; and a number of stratigraphically/geomorphically distinct fluvial features. Samples of the crater wall and rim rock, and more recent to currently active surface materials also may be studied. Gale has a well-defined regional context and strong evidence for a progression through multiple potentially habitable environments. These environments are represented by a stratigraphic record of extraordinary extent, and insure preservation of a rich record of the environmental history of early Mars. The interior mountain of Gale Crater has been informally designated at Mount Sharp, in honor of the pioneering planetary scientist Robert Sharp. The major subsystems of the MSL Project consist of a single rover (with science payload), a Multi-Mission Radioisotope Thermoelectric Generator, an Earth-Mars cruise stage, an entry, descent, and landing system, a launch vehicle, and the mission operations and ground data systems. The primary communication path for downlink is relay through the Mars Reconnaissance Orbiter. The primary path for uplink to the rover is Direct-from-Earth. The secondary paths for downlink are Direct-to-Earth and relay through the Mars Odyssey orbiter. Curiosity is a scaled version of the 6-wheel drive, 4-wheel steering, rocker bogie system from the Mars Exploration Rovers (MER) Spirit and Opportunity and the Mars Pathfinder Sojourner. Like Spirit and Opportunity, Curiosity offers three primary modes of navigation: blind-drive, visual odometry, and visual odometry with hazard avoidance. Creation of terrain maps based on HiRISE (High Resolution Imaging Science Experiment) and other remote sensing data were used to conduct simulated driving with Curiosity in these various modes, and allowed selection of the Gale crater landing site which requires climbing the base of a mountain to achieve its primary science goals. The Sample Acquisition, Processing, and Handling (SA/SPaH) subsystem is responsible for the acquisition of rock and soil samples from the Martian surface and the processing of these samples into fine particles that are then distributed to the analytical science instruments. The SA/SPaH subsystem is also responsible for the placement of the two contact instruments (APXS, MAHLI) on rock and soil targets. SA/SPaH consists of a robotic arm and turret-mounted devices on the end of the arm, which include a drill, brush, soil scoop, sample processing device, and the mechanical and electrical interfaces to the two contact science instruments. SA/SPaH also includes drill bit boxes, the organic check material, and an observation tray, which are all mounted on the front of the rover, and inlet cover mechanisms that are placed over the SAM and CheMin solid sample inlet tubes on the rover top deck. 相似文献
16.
Provided here is an overview of Radiation Belt Storm Probes (RBSP) mission design. The driving mission and science requirements are presented, and the unique engineering challenges of operating in Earth’s radiation belts are discussed in detail. The implementation of both the space and ground segments are presented, including a discussion of the challenges inherent with operating multiple observatories concurrently and working with a distributed network of science operation centers. An overview of the launch vehicle and the overall mission design will be presented, and the plan for space weather data broadcast will be introduced. 相似文献
17.
John F. Cavanaugh James C. Smith Xiaoli Sun Arlin E. Bartels Luis Ramos-Izquierdo Danny J. Krebs Jan F. McGarry Raymond Trunzo Anne Marie Novo-Gradac Jamie L. Britt Jerry Karsh Richard B. Katz Alan T. Lukemire Richard Szymkiewicz Daniel L. Berry Joseph P. Swinski Gregory A. Neumann Maria T. Zuber David E. Smith 《Space Science Reviews》2007,131(1-4):451-479
The Mercury Laser Altimeter (MLA) is one of the payload science instruments on the MErcury Surface, Space ENvironment, GEochemistry,
and Ranging (MESSENGER) mission, which launched on August 3, 2004. The altimeter will measure the round-trip time of flight
of transmitted laser pulses reflected from the surface of the planet that, in combination with the spacecraft orbit position
and pointing data, gives a high-precision measurement of surface topography referenced to Mercury’s center of mass. MLA will
sample the planet’s surface to within a 1-m range error when the line-of-sight range to Mercury is less than 1,200 km under
spacecraft nadir pointing or the slant range is less than 800 km. The altimeter measurements will be used to determine the
planet’s forced physical librations by tracking the motion of large-scale topographic features as a function of time. MLA’s
laser pulse energy monitor and the echo pulse energy estimate will provide an active measurement of the surface reflectivity
at 1,064 nm. This paper describes the instrument design, prelaunch testing, calibration, and results of postlaunch testing. 相似文献
18.
The Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) on the New Horizons Mission
Ralph L. McNutt Jr. Stefano A. Livi Reid S. Gurnee Matthew E. Hill Kim A. Cooper G. Bruce Andrews Edwin P. Keath Stamatios M. Krimigis Donald G. Mitchell Barry Tossman Fran Bagenal John D. Boldt Walter Bradley William S. Devereux George C. Ho Stephen E. Jaskulek Thomas W. LeFevere Horace Malcom Geoffrey A. Marcus John R. Hayes G. Ty Moore Nikolaos P. Paschalidis Mark E. Perry Bruce D. Williams Paul Wilson IV Lawrence E. Brown Martha B. Kusterer Jon D. Vandegriff 《Space Science Reviews》2009,145(3-4):381-381
19.
The Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) on the New Horizons Mission
Ralph L. McNutt Jr. Stefano A. Livi Reid S. Gurnee Matthew E. Hill Kim A. Cooper G. Bruce Andrews Edwin P. Keath Stamatios M. Krimigis Donald G. Mitchell Barry Tossman Fran Bagenal John D. Boldt Walter Bradley William S. Devereux George C. Ho Stephen E. Jaskulek Thomas W. LeFevere Horace Malcom Geoffrey A. Marcus John R. Hayes G. Ty Moore Mark E. Perry Bruce D. Williams Paul Wilson IV Lawrence E. Brown Martha B. Kusterer Jon D. Vandegriff 《Space Science Reviews》2008,140(1-4):315-385
The Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) comprises the hardware and accompanying science investigation on the New Horizons spacecraft to measure pick-up ions from Pluto’s outgassing atmosphere. To the extent that Pluto retains its characteristics similar to those of a “heavy comet” as detected in stellar occultations since the early 1980s, these measurements will characterize the neutral atmosphere of Pluto while providing a consistency check on the atmospheric escape rate at the encounter epoch with that deduced from the atmospheric structure at lower altitudes by the ALICE, REX, and SWAP experiments on New Horizons. In addition, PEPSSI will characterize any extended ionosphere and solar wind interaction while also characterizing the energetic particle environment of Pluto, Charon, and their associated system. First proposed for development for the Pluto Express mission in September 1993, what became the PEPSSI instrument went through a number of development stages to meet the requirements of such an instrument for a mission to Pluto while minimizing the required spacecraft resources. The PEPSSI instrument provides for measurements of ions (with compositional information) and electrons from 10 s of keV to ~1 MeV in a 160°×12° fan-shaped beam in six sectors for 1.5 kg and ~2.5 W. 相似文献
20.