首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The Infrared Space Observatory (ISO), a programme of the European Space Agency, is an astronomical satellite operating at wavelength from 2.5 to 200 m. It will be launched in 1995.The ISO optical subsystem is a cryogenically cooled telescope with its baffling system (main baffle and sunshade). The telescope, a 60 cm Ritchey-Chrétien type, focuses the beam to the four scientific instruments located in its focal plane. The extremely low temperature, 1.8 K, is provided by the payload module (PLM) cryostat, filled with superfluid He.This paper presents the main choices done for the telescope design together with their rationale and the performances achieved on the flight model (FM) of the telescope. The FM telescope is presently installed inside the payload module, ready for the system final verifications.  相似文献   

3.
For five years, theEdison program has had the goal of developing new designs for infrared space observatories which will break the cost curve by permitting more capable missions at lower cost. Most notably, this has produced a series of models for purely radiative and radiative/mechanical (hybrid) cooling which do not use cryogens and optical designs which are not constrained by the coolant tanks. Purely radiatively-cooled models achieve equilibrium temperatures as low as about 20 K at a distance of 1 AU from the sun. More advancedEdison designs include mechanical cooling systems attached to the telescope assembly which lower the optical system temperature to 5 K or less. Via these designs, near-cryogenic temperatures appear achievable without the limitations of cryogenic cooling. OneEdison model has been proposed to the European Space Agency as the next generation infrared space observatory and is presently under consideration as a candidate ESA Cornerstone mission. The basic design is also the starting point for elements of future infrared space interferometers.  相似文献   

4.
Methods are discussed for establishing the optical identification of X ray sources in the medium and deep X-ray surveys of the Einstein Observatory. Of the 63 X-ray sources with a statistical significance of 5 in the medium survey (Maccacaro et al. 1981), optical identification work is summarized for 51, of which identifications have been made with 30 active galactic nuclei. The optical properties of some of these X-ray selected objects are briefly discussed.The Einstein deep survey of Pavo (Griffiths et al. 1981) is used to illustrate the problems and methods used for securing optical identifications for X-ray sources in the deep survey fields. Identifications have been made with 4 QSOs at the bright end of the optical candidate distribution (together with 3 G stars) and it is shown that a further 7 fainter objects are also likely to be QSOs.  相似文献   

5.
The Infrared Space Observatory (ISO), a fully approved and funded project of the European Space Agency (ESA), is an astronomical satellite, which will operate at wavelengths from 2.5–240 m. ISO will provide astronomers with a unique facility of unprecedented sensitivity for a detailed exploration of the universe ranging from objects in the solar system right out to distant extragalactic sources. The satellite essentially consists of a large cryostat containing at launch over 2000 litres of superfluid helium to maintain the Ritchey-Chrétien telescope, the scientific instruments and the optical baffles at temperatures between 2 K and 8 K. The telescope has a 60-cm diameter primary mirror and is diffraction-limited at a wavelength of 5 m. A pointing accuracy of a few arc seconds is provided by a three-axis-stabilisation system consisting of reaction wheels, gyros and optical sensors. ISO's instrument complement consists of four instruments, namely: an imaging photo-polarimeter (2.5–240 m), a camera (2.5–17 m), a short wavelength spectrometer (3–45 m) and a long wavelength spectrometer (43–196 m). These instruments are being built by international consortia of scientific institutes and have been delivered to ESA for in-orbit operations. ISO will be launched in September 1995 by an Ariane 4 into an elliptical orbit (apogee 70000 km and perigee 1000 km) and will be operational for at least 18 months. In keeping with ISO's role as an observatory, the majority of its observing time is being made available to the general astronomical community via a Call for Observing Proposals.  相似文献   

6.
The United States and German Space Agencies (NASA and DARA) are collaborating in plans for SOFIA — The Stratospheric Observatory for Infrared Astronomy. It is a 2.5 meter telescope to be installed in a Boeing 747 aircraft and operated at altitudes from 41,000 to 45,000 feet. It will permit routine measurement of infrared radiation absorbed by the atmosphere at lower altitudes, and observation of astronomical objects and transient events from anywhere in the world. The concept is based on 20 years of experience with NASA's Kuiper Airborne Observatory (KAO), which SOFIA would replace. SOFIA will complement the capabilities of other future space missions, and will enable scientists to make observations which would otherwise be made from space.  相似文献   

7.
This paper describes the engineering solutions to erect a back-side lunar observatory as a national asset. It describes landing at the lunar sites and methods of communicating data to and from Earth via comsats or a relay station on the Earth-side. The paper suggests a sequential construction of the sensor array, power supply, and communication equipment. It describes the likely revisits to the sites for periodic maintenance. The observatory is technically feasible and awaits a detailed design study to site the lunar equipment and choose among several alternatives, for example; the location of the array, the power supply and the communication channels. An Earth command center will be needed to archive and distribute data to principal investigators.  相似文献   

8.
EDISON, a large-aperture, radiatively-cooled telescope, is proposed as the major international mission to follow the current generation of cryogenically-cooled infrared space telescopes. It is being studied at present as a 2.5–3.5 m mixed radiatively- and mechanically-cooled facility optimized to investigate the wavelength range 3–100+ m. This paper outlines the status of the project, discusses some aspects of a smaller-aperture precursor mission, and describes a portion of the baseline science mission.  相似文献   

9.
10.
11.
12.
The local interstellar medium can be probed in different ways: by analyzing low energy X-ray data in the range 0.1–0.4 keV, where the radiation is absorbed by the interstellar gas at column densities in excess of about 1020 cm-2 — and can therefore be regarded as local, by determining the absorption of stellar emission spectra from nearby stars along their lines of sight by intervening gas and by directin situ measurements of those components which penetrate the heliosphere sufficiently far, provided they can be distinguished from interplanetary material. The current status of these different investigations gives the following picture: the solar system is surrounded by a bubble of hot gas (density 0.005cm-3, temperature 106 K) out to several tens of parsecs. More locally it is embedded in a small warm cloud of density 0.07cm-3, temperature 7000 K, column density 5 × 1017 cm-2 — which gives a mass of about 0.1M . The transition to the heliosphere is governed by solar UV ionization, snowploughing of the interstellar gas by the outwardly expanding solar wind and the bow shock. The heliosphere is the region inside the solar wind terminal shock. Classically it would be regarded as not yet affected by (or aware of) the obstacle ahead. Practically, the existence of the interstellar medium makes itself felt even far inside the heliosphere by the penetration of neutral gas, dust, plasma waves, shock accelerated particles and cosmic rays. These are the local probes of the interstellar medium.  相似文献   

13.
14.
15.
16.
Conclusion The space observatory whose major systems are outlined in the present paper is being designed to ensure astrophysical explorations in the field of -ray astronomy during the course of one year. The observatory is supposed to travel along a circular orbit up to 400 km in altitude, inclined at 51.6°. Investigations to be accomplished in the observatory will enable us to make substantial progress in gaining a deeper insight into a wide variety of astrophysical phenomena.  相似文献   

17.
Configuration stability is essential for a space-based Gravitational-Wave(GW) observatory, which can be impacted by orbit insertion uncertainties. Configuration uncertainty propagation is vital for investigating the influences of uncertainties on configuration stability and can be potentially useful in the navigation and control of GW observatories. Current methods suffer from drawbacks related to high computational burden. To this end, a Radial-Tangential-Ddirectional State Transition Tensor(RT-DSTT)-based configuration uncertainty propagation method is proposed.First, two sensitive directions are found by capturing the dominant secular terms. Considering the orbit insertion errors along the two sensitive directions only, a reduced-order RT-DSTT model is developed for orbital uncertainty propagation. Then, the relationship between the uncertainties in the orbital states and the uncertainties in the configuration stability indexes is mapped using highorder derivatives. The result is a semi-analytical solution that can predict the deviations in the configuration stability indexes given orbit insertion errors. The potential application of the proposed RT-DSTT-based method in calculating the feasible domain is presented. The performance of the proposed method is validated on the Laser Interferometer Space Antenna(LISA) project. Simulations show that the proposed method can provide similar results to the STT-based method but requires only half of the computational time.  相似文献   

18.
MHD turbulence properties in the solar wind are briefly reviewed. The evolution of fluctuations of alfvénic type in near-ecliptic regions of the inner heliosphere is described. The role of interplanetary sources and the influence of interactions with structures convected by the solar wind are discussed. Turbulence features at high latitudes and in the outermost regions of the heliosphere are finally highlighted.  相似文献   

19.
Recent measurements of the extraterrestrial UV- and EUV-radiation, and the various theoretical approaches used in explaining the measured features of these radiations are reviewed. Whereas the structures and intensities of extraterrestrial EUV-radiation are essentially undetermined up to now, the observations of the extraterrestrial UV-sky give a clear indication of the existence of neutral interstellar hydrogen within the solar system.The effects of solar radiation pressure, and of temporal variations and spatial asymmetries in the solar radiations, on the structure of the extraterrestrial L sky are investigated in detail, and the various attempts to derive interstellar parameters from the interpretation of the measured L intensities are discussed.From these discussions the local interstellar medium is established as a tenuous hot intercloud H i-medium. The amount of its relative motion against the solar system cannot be reliably fixed. Further activities concerning the measurement of extraterrestrial UV- and EUV-radiation features are suggested that may be highly valuable in clarifying the outstanding problems.  相似文献   

20.
This paper reviews the principal results of direct measurements of the plasma and magnetic field by spacecraft close to the Earth (within the heliocentric distance range 0.7–1.5 AU). The paper gives an interpretation of the results for periods of decrease, minimum and increase of the solar activity. The following problems are discussed: the interplanetary plasma (chemical composition, density, solar wind flow speed, temperature, temporal and spatial variation of these parameters), the interplanetary magnetic field (intensity, direction, fluctuations and its origin), some derived parameters characterizing the physical condition of the interplanetary medium; the quasi-stationary sector structure and its connection with solar and terrestrial phenomena; the magnetohydrodynamic discontinuities in the interplanetary medium (tangential discontinuities and collisionless shock waves); the solar magnetoplasma interaction with the geomagnetic field (the collisionless bow shock wave, the magnetosheath, the magnetopause, the Earth's magnetic tail, the internal magnetosphere characteristics), the connection between the geomagnetic activity and the interplanetary medium and magnetosphere parameters; peculiarities in behaviour of the interplanetary medium and magnetosphere during geomagnetic storms; energetic aspects of the geomagnetic storms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号