共查询到20条相似文献,搜索用时 15 毫秒
1.
D. Vanbeveren 《Space Science Reviews》1993,66(1-4):327-347
This paper briefly reviews the competition between massive single star and massive close binary evolution the last two decades. The status of the binary evolutionary model is summarized, the assumptions and simplifications are critically discussed. Using all computations performed since 1970, general conclusions are drawn and a comparison with massive single star evolution is presented. Special attention is given at the assumptions behind the commonly accepted model for the mass gainer and a new accretion model is proposed. The binary results in combinarion with single star evolution are compared with observations of massive stars with emphasis on the HR diagram, star number counts, WR stars, SN 1987A, OBN and OBC stars. 相似文献
2.
3.
Edward P. J. van den Heuvel 《Space Science Reviews》1981,30(1-4):623-642
Observational evidence suggests that most — if not all — binary X-ray sources are neutron stars. The evolutionary status and possible formation mechanisms of the type I (massive) and type II (low-mass) X-ray binaries are discussed. The difference between the standard massive X-ray binaries and the Be/X-ray binaries is ascribed to a somewhat different evolutionary history and status, and possible reasons for the existence of short- and long — period X-ray pulsars are discussed. Type II X-ray sources in globular clusters were most probably formed by capture processes; their formation rate inferred from the observations indicates that only a small fraction ( 1 to 10 percent) of the originally formed neutron stars have remained in their clusters. Type II sources in the galactic bulge may also have formed from cataclysmic binaries in which a white dwarf was driven over the Chandrasekhar limit by accretion. 相似文献
4.
I. V. Moskalenko 《Space Science Reviews》1995,72(3-4):593-627
It is commonly accepted that candidates for very high energy -ray sources are neutron stars, binary systems, black holes etc. Close binary systems containing a normal hot star and a neutron star (or a black hole) form an important class of very high energy -ray sources. Such systems are variable in any region of the electromagnetic spectrum and they enable us to study various stages of stellar evolution, accretion processes, mechanisms of particle acceleration, etc. Phenomena connected with this class of very high energy -ray sources are discussed. Particular emphasis has been placed on the TeV energy region. 相似文献
5.
6.
The present knowledge of the structure of low-mass X-ray binary systems is reviewed. We examine the orbital period distribution of these sources and discuss how the orbital periods are measured. There is substantial observational evidence that the accretion disks in low-mass X-ray binaries are thick and structured. In a number of highly inclined systems, the compact X-ray emitting star is hidden from direct view by the disk and X-radiation is observed from these only because photons are scattered into the line of sight by material above and below the disk plane. In such systems the X-ray emission can appear extended with respect to the companion star, which can lead to partial X-ray eclipses. There are substantial variations in the thickness of the disk rim with azimuth. These give rise to the phenomenon of irregular dips in the X-ray flux which recur with the orbital period, or to an overall binary modulation of the X-ray flux if the source is extended. The X-ray spectra of low-mass X-ray binaries can be used to probe the innermost emission regions surrounding the compact star. The spectra of the bright Sco X-1 variables can be fitted with two components which are provisionally identified as originating in the inner disk and the boundary layer between the disk and the neutron star respectively. The characteristic energy dependent flaring of the Sco X-1 sub-class may be a geometric effect triggered by an increase in the thickness of the inner disk or boundary layer. The X-ray spectra of the lower luminosity systems, including the bursters, are less complex, and in many cases can be represented by a single power law with, in some sources, a high energy cut-off. Iron line emission is a characteristic of most low-mass X-ray binaries, irrespective of luminosity. 相似文献
7.
M. Van Der Klis 《Space Science Reviews》1992,62(1-2):173-202
The observational information on X-ray binaries that was collected with the 80 cm2 auxiliary X-ray detector onboard the COS-B gamma-ray satellite is reviewed. The results illustrate that in the study of X-ray binaries observations of long duration are extremely effective, even when using a small instrument. 相似文献
8.
9.
10.
D. Vanbeveren 《Space Science Reviews》1991,56(3-4):249-311
11.
12.
13.
Edward C. Olson 《Space Science Reviews》1989,49(3-4):23-34
Summary A multi-year photometric program on long-period eclipsing binaries has begun to uncover some properties of accretion disks in these systems. Emission and transmission properties can sometimes be found from light curve features produced by partial eclipses of the disk by the cool star, and by partial occultations of the cool star by the disk. These disks do not have the classical alpha structure. They are optically thin normal to the orbital plane, but may be geometrically thicker than purely gravitationally-stratified disks. Disk gas may be contaminated by dust particles acquired from the outer layers of the cool loser. In some systems, high states, produced by elevated mass accretion by the hot star, occur, suggesting that the mass distribution in the disk is clumpy. However mass-transfer rates are found, they lie between 10-7 and 10-6 solar masses per year.While this binary sample is small at the moment, some of its properties are shared with other systems. The author has five-color observations of about a dozen additional systems, which may fill out this picture more fully. 相似文献
14.
15.
16.
Robin Corbet 《Space Science Reviews》1985,40(3-4):409-413
The spin periods of accreting neutron stars in binary systems with Be star primaries are shown to depend more strongly on periastron distance than apastron distance. This is interpreted as showing that neutron stars spin-up on shorter timescales than they spin-down. The pulse and orbital periods of V 0332+53 suggest that the optical counterpart of this source is a Be star. 相似文献
17.
Initial results are presented from a study of H γ profiles in the two interacting binaries KX And and RX Cas of W Serpentis type. The used CCD spectra with a resolution of 0.13Å/px were obtained with the 2.2m telescope and the Coudé spectrograph at the German-Spanish Astronomical Center at Calar Alto/Spain. KX And. This star is probably a non-eclipsing member of the W Serpentis type interactive binaries and has a period of P = 38.908 days. Our seven spectra of KX And were obtained at phase 0.54 – 0.75. The P Cyg profiles of the H γ line during our observations indicate an expanding shell. The asymetry becomes blue-sided at phase 0.67 and increases thereafter. This points toward a strong outflow of matter in the vicinity of the L3 point. RX Cas. According to the model of Andersen et al. (1988) the primary is a mid-B type star with M = 5.8M ⊙ and R = 2.5R ⊙. The star is completely obscured by a geometrically and optically thick disk, which is supplied by mass transfer from the other component. The secondary is a K1 giant with M = 1.8M ⊙ and R = 23.5R ⊙ and fills out his critical Roche lobe. Radiative and geometrical properties of the disk are variable and its structure is probably not homogenous. Five spectra of RX Cas were obtained during the primary eclipse (phase 0.95 – 0.19). The observed double-peak emission is seen only after the eclipse with a separation of ≈ 250 km/s peak-to-peak, while during the eclipse an asymetric line profile can be observed with a red-shifted emission always presented. Also, a central emission at φ = 0.94 should be noticed, probably originating in the vicinity of L1. The observations of both systems indicate that we are dealing with strongly interacting binaries. Further observations are planned for better covering of phase. 相似文献
18.
Initial results are presented from a study of H
profiles in the two interacting binaries KX And and RX Cas of W Serpentis type. The used CCD spectra with a resolution of 0.13Å/px were obtained with the 2.2m telescope and the Coudé spectrograph at the German-Spanish Astronomical Center at Calar Alto/Spain.KX And. This star is probably a non-eclipsing member of the W Serpentis type interactive binaries and has a period of P = 38.908 days. Our seven spectra of KX And were obtained at phase 0.54 – 0.75. The P Cyg profiles of the H
line during our observations indicate an expanding shell. The asymetry becomes blue-sided at phase 0.67 and increases thereafter. This points toward a strong outflow of matter in the vicinity of the L3 point.RX Cas. According to the model of Andersen et al. (1988) the primary is a mid-B type star with M = 5.8M
and R = 2.5R
. The star is completely obscured by a geometrically and optically thick disk, which is supplied by mass transfer from the other component. The secondary is a K1 giant with M = 1.8M
and R = 23.5R
and fills out his critical Roche lobe. Radiative and geometrical properties of the disk are variable and its structure is probably not homogenous.Five spectra of RX Cas were obtained during the primary eclipse (phase 0.95 – 0.19). The observed double-peak emission is seen only after the eclipse with a separation of 250 km/s peak-to-peak, while during the eclipse an asymetric line profile can be observed with a red-shifted emission always presented. Also, a central emission at = 0.94 should be noticed, probably originating in the vicinity of L1.The observations of both systems indicate that we are dealing with strongly interacting binaries. Further observations are planned for better covering of phase.Visiting Astronomer, German-Spanish Astronomical Center, Calar Alto, operated by the Max-Planck-Institut für Astronomie Heidelberg jointly with the Spanish National Commision for Astronomy. 相似文献
19.
We have analyzed UV photospheric lines of seven O-type binaries, by means of crosscorrelation and Doppler tomographic methods, with the goal of estimating the physical properties of the individual stars. These systems are HD 1337 (AO Cas), HD 47129 (Plaskett's star), HD 57060 (29 UW CMa), HD 37043 (Iota Ori), HD 215835 (DH Cep), HD 152218, and HD 152248. Mass ratios have been obtained primarily from a cross-correlation technique, but also by several other techniques. The tomographic techniques allow us to separate the spectra of the components. We then can estimate the individual spectral types and luminosity classes of the stars (and henceT eff and logg, respectively), the luminosity ratio, and projected rotational velocities. We discuss the physical properties of these O-type binaries. These are some of the early results of a large scale project involving 36 O-type double-lined binary systems (from the catalog of Battenet al. 1989) which we will study using IUE and complementary ground-based data. 相似文献