FY-3D卫星高光谱温室气体监测仪热控设计及在轨验证 |
| |
引用本文: | 申春梅,于峰,刘文凯. FY-3D卫星高光谱温室气体监测仪热控设计及在轨验证[J]. 北京航空航天大学学报, 2020, 46(11): 2026-2038. DOI: 10.13700/j.bh.1001-5965.2020.0138 |
| |
作者姓名: | 申春梅 于峰 刘文凯 |
| |
作者单位: | 1.北京空间机电研究所, 北京 100094 |
| |
摘 要: | FY-3D卫星高光谱温室气体监测结构布局紧凑,在较小尺寸空间内布置有8个镜头组件、12台电子设备和3台电机。内热源数量众多,光学镜头控温精度要求高,热控功耗及散热面资源紧张,使热控系统设计难度较大。基于热管理、辐射间接热控、辐射冷却及结构热控协同优化设计等多种思路对监测仪热控系统进行设计,有效解决热控难题。入轨后监测仪历经了多个工况模式切换,在轨温度数据表明,所有工况模式下各部组件温度都满足指标要求,且光学镜头温度稳定度较高,在正常工作模式下,干涉仪关键件最大温度波动在±0.15℃以内,其他光学镜头组件最大温度波动在±0.45℃以内,且无论整轨待机模式还是正常工作模式,基于热管理的2组电子设备散热系统都无需消耗热控功耗,实现了多热源复杂机制下高精度控温及节能热设计。
|
关 键 词: | 空间光学遥感器 温室气体监测仪 热控 热管理 辐射间接热控 高精度控温 |
收稿时间: | 2020-04-13 |
Thermal control system design and on-orbit verification of hyperspectral greenhouse gas monitor on FY-3D satellite |
| |
Affiliation: | 1.Beijing Institute of Space Mechanics and Electricity, Beijing 100094, China2.Key Laboratory for Advanced Optical Remote Sensing Technology of Beijing, Beijing 100094, China |
| |
Abstract: | The structure layout of hyperspectral greenhouse gas monitor on FY-3D satellite is very compact. There are eight optical lens, twelve electronic devices and three motors in the small-scale space. There are so many optical lens with high-precision temperature control requirement and so many heat source equipment. And thermal control resources such as heating power and radiator layout space are limited. These above characteristics make thermal control system design of hyperspectral greenhouse gas monitor a challenge. Thermal control system was designed based on multiple design methods including thermal management, indirect radiation thermal control, radiation cooling and collaborative optimization design of integrated structural and thermal control. Thermal control difficult problems were solved effectively. Hyperspectral greenhouse gas monitor experienced multiple operating modes after entering orbit. On-orbit temperature data show that all components' temperatures meet the requirements, and optical lens have high temperature stability under all the experienced operating modes. The maximum temperature fluctuation of interferometer is within ±0.15℃ under normal operating mode, and it is within ±0.45℃ for other optical lens. Furthermore, no matter under standby mode in a whole orbit period or normal operating mode, the heat dissipation systems of two sets of electronic device designed based on thermal management do not need to consume thermal control power resources. High-precision thermal control and energy saving thermal design are realized under the condition of multiple heat sources and complex working mechanism. |
| |
Keywords: | |
|
| 点击此处可从《北京航空航天大学学报》浏览原始摘要信息 |
|
点击此处可从《北京航空航天大学学报》下载全文 |
|