首页 | 本学科首页   官方微博 | 高级检索  
     

基于序列采样算法的轮盘减质优化
引用本文:徐胜利,刘海涛,王晓放,宋洋. 基于序列采样算法的轮盘减质优化[J]. 航空动力学报, 2014, 29(9): 2097-2103. DOI: 10.13224/j.cnki.jasp.2014.09.012
作者姓名:徐胜利  刘海涛  王晓放  宋洋
作者单位:1. 大连理工大学 能源与动力学院, 辽宁 大连 116024;
基金项目:辽宁省博士启动基金(20131019);国家重点基础研究发展计划(2009CB724303);中央高校基本科研业务费专项资金(DUT14QY36)
摘    要:介绍了一种基于蒙特卡罗表述的空间缩减策略和局部边界线搜索的序列采样算法,该算法利用已有样本点的信息缩减原有设计空间,使得在缩减设计空间上生成的新样本点能够同时具有良好的空间填充特性和投影特性.与已有的序列采样算法的比较结果表明,该算法具有较高的采样效率和采样质量.采用此序列采样算法结合Kriging模型和遗传算法进行轮盘减质优化,优化结果减质10%.该序列采样算法为工程结构的优化提供了一条灵活有效的途径. 

关 键 词:空间缩减   序列采样   代理模型   轮盘   减质优化
收稿时间:2013-05-22

Mass optimization of turbine disk based on sequential sampling algorithm
XU Sheng-li,LIU Hai-tao,WANG Xiao-fang and SONG Yang. Mass optimization of turbine disk based on sequential sampling algorithm[J]. Journal of Aerospace Power, 2014, 29(9): 2097-2103. DOI: 10.13224/j.cnki.jasp.2014.09.012
Authors:XU Sheng-li  LIU Hai-tao  WANG Xiao-fang  SONG Yang
Affiliation:1. School of Energy and Power Engineering, Dalian University of Technology, Dalian Liaoning 116024, China;2. Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian Liaoning 116024, China;3. Shenyang Engine Design and Research Institute, Aviation Industry Corporation of China, Shenyang 110015, China
Abstract:A sequential sampling algorithm based on Monte Carlo-based space reduction and local boundary search was introduced. This algorithm utilized the information of the current samples to reduce the design space in order to generate new samples with better space-filling and projective properties. The comparative results with existing sequential sampling algorithm demonstrate that this algorithm can efficiently generate better samples. This sequential sampling algorithm combined with Kriging model and genetic algorithm was used in the mass optimization of turbine disk, obtaining mass reduction of 10%. The results show that this sequential sampling algorithm provides a flexible and efficient approach for the engineering structure optimization.
Keywords:space reduction  sequential sampling  surrogate models  turbine disk  mass optimization
本文献已被 CNKI 等数据库收录!
点击此处可从《航空动力学报》浏览原始摘要信息
点击此处可从《航空动力学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号