首页 | 本学科首页   官方微博 | 高级检索  
     

基于DMOM算法的航空发动机性能寻优控制
引用本文:王元,李秋红,黄向华. 基于DMOM算法的航空发动机性能寻优控制[J]. 航空动力学报, 2016, 31(4): 948-954. DOI: 10.13224/j.cnki.jasp.2016.04.023
作者姓名:王元  李秋红  黄向华
作者单位:1. 中国航空工业集团公司航空动力控制系统研究所, 江苏无锡 214063;
基金项目:航空科学基金(20110652003);江苏省优势学科
摘    要:
提出一种分散迁移优化算法(DMOM),可实现多峰值优化问题的全局最优解搜索.该算法通过随机选择参考粒子,不断迁移搜索自身所处区域峰值点,再通过分散操作排除局部最优点,重新生成新个体,可快速搜索到全局最优区域.将DMOM应用于航空发动机性能寻优控制仿真,结果表明:在最小油耗和最低涡轮温度模式下, DMOM的寻优速度相比遗传算法(GA)和粒子群算法(PSO)提高了2倍以上;同时DMOM的优化精度相比自组织迁移算法(SOMA)提高了60%以上,相比可行性序列二次规划(FSQP)算法提高了20%以上.验证了DMOM相比其他优化算法有更强的跳出局部最优的能力,在航空发动机最小油耗和最低涡轮温度这类多峰值寻优问题中具有明显的优势. 

关 键 词:航空发动机   性能寻优控制   分散迁移优化算法   最小油耗寻优控制   全局最优解
收稿时间:2014-06-13

Aero-engine performance seeking control based on DMOM algorithm
WANG Yuan,LI Qiu-hong and HUANG Xiang-hua. Aero-engine performance seeking control based on DMOM algorithm[J]. Journal of Aerospace Power, 2016, 31(4): 948-954. DOI: 10.13224/j.cnki.jasp.2016.04.023
Authors:WANG Yuan  LI Qiu-hong  HUANG Xiang-hua
Affiliation:1. Aviation Motor Control System Institute, Aviation Industry Corporation of China, Wuxi Jiangsu 214063, China;2. Jiangsu Province Key Laboratory of Aerospace Power System, College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Abstract:
A distributed migration optimization method (DMOM) for multi-peak optimization problem was proposed to find global optima solution. In this algorithm, the local optima could be searched out by continuous discrete and migration with new individuals. Then the global optima solution was found by sorting. During the discrete process the possibility of sinking into local optima was reduced compared with other algorithms. The DMOM was used for aero-engine performance seeking control in digital simulation. Results show that, in minimum fuel mode and minimum turbine temperature mode, the DMOM is improved by more than 2 times compared with genetic algorithm (GA) and particle swarm optimization (PSO), the optimization accuracy of DMOM is improved by more than 60% compared with self-organizing migrating algorithm (SOMA), and more than 20% compared with feasible sequential quadratic programming(FSQP). Comparative results show that the calculation time can be reduced and the aero-engine performance can be improved by using this algorithm.
Keywords:aero-engine  performance seeking control(PSC)  distributed migration optimization method(DMOM)  minimum fuel consumption seeking control  global optima solution
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《航空动力学报》浏览原始摘要信息
点击此处可从《航空动力学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号