高级检索

轴流压气机一维特性计算方法简介及展望

王进, 周玲, 季路成. 轴流压气机一维特性计算方法简介及展望[J]. 实验流体力学, 2021, 35(2): 1-12. doi: 10.11729/syltlx20200088
引用本文: 王进, 周玲, 季路成. 轴流压气机一维特性计算方法简介及展望[J]. 实验流体力学, 2021, 35(2): 1-12. doi: 10.11729/syltlx20200088
Jin WANG, Ling ZHOU, Lucheng JI. Brief introduction and prospect of calculation methods for one-dimensional characteristics of axial flow compressor[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(2): 1-12. doi: 10.11729/syltlx20200088
Citation: Jin WANG, Ling ZHOU, Lucheng JI. Brief introduction and prospect of calculation methods for one-dimensional characteristics of axial flow compressor[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(2): 1-12. doi: 10.11729/syltlx20200088

轴流压气机一维特性计算方法简介及展望

  • 基金项目:
    国家科技重大专项(2017-II-0006-0020,2017-II-0001-0013)
详细信息
    作者简介:

    王进(1995-), 男, 湖北十堰人, 硕士研究生。研究方向: 压气机一维设计分析。通信地址: 北京市海淀区北京理工大学宇航学院(100081)。E-mail: 2504571042@qq.com

    通讯作者: 周玲, E-mail: lingzhou@bit.edu.cn
  • 中图分类号: V231.1

Brief introduction and prospect of calculation methods for one-dimensional characteristics of axial flow compressor

More Information
    Corresponding author: Ling ZHOU, E-mail: lingzhou@bit.edu.cn
  • 一维特性计算作为压气机设计体系的关键环节,在压气机的初始设计阶段发挥了重要作用。作为一种高度经验化的工程近似计算方法,一维性能计算需要大量实验数据的支撑。从实验数据中总结得到的经验关联式的质量,是决定一维计算成功与否的关键。在充分调研欧美以级叠加方法和平均线方法为主的一维性能分析方法的基础上,回顾了轴流压气机一维特性计算方法的起源,讨论了其发展趋势与研究现状。对一维特性计算方法的基本原理及其所使用的经典经验关联式进行了整理总结,指明了压气机一维性能分析未来进一步发展的方向。

  • 加载中
  • 图 1  典型的级性能[7]

    Figure 1.  Typical stage performance[7]

    图 2  非设计转速下的级性能[15]

    Figure 2.  Stage performance at off-design speed[15]

    图 3  C135压气机首级的性能[14]

    Figure 3.  First stage performance of C135 compressor[14]

    图 4  C135压气机首级转子平均半径处的马赫数与最佳攻角、失速攻角以及堵塞攻角的关系[14]

    Figure 4.  Maximum efficiency, stall and choke incidences and rotor inlet Mach numbers at mean radius for first stage of C135 compressor[14]

    图 5  HARIKA程序计算框架

    Figure 5.  Calculation framework of HARIKA program

    图 6  某三级压气机特性[33]

    Figure 6.  A 3-stage compressor characteristic[33]

    图 7  平均线方法

    Figure 7.  Meanline method

    图 8  叶片表面附面层和尾迹的发展[51]

    Figure 8.  Development of surface boundary layers and wake in flow about cascade blade sections[51]

    图 9  激波结构示意图[51]

    Figure 9.  Schematic representation of shock wave configuration[51]

    图 10  上端壁处的叶尖泄露涡和通道涡

    Figure 10.  Tip leakage vortex and passage vortex at tip endwall

    图 11  C135两级跨音压气机特性

    Figure 11.  C135 two-stage transonic compressor prediction

  • [1]

    MOLINARI M, DAWES W N. Review of evolution of compressor design process and future perspectives[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2006, 220(6): 761-771. doi:10.1243/09544062jmes298

    [2]

    刘永泉, 刘太秋, 季路成. 航空发动机风扇/压气机技术发展的若干问题与思考[J]. 航空学报, 2015, 36(8): 2563-2576. doi: 10.7527/S1000-6893.2015.0078

    LIU Y Q, LIU T Q, JI L C. Some problems and thoughts in the development of aero-engine fan/compressor[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8): 2563-2576. doi:10.7527/S1000-6893.2015.0078

    [3]

    HORLOCK J H, DENTON J D. A review of some early design practice using computational fluid dynamics and a current perspective[J]. Journal of Turbomachinery, 2005, 127(1): 5-13. doi:10.1115/1.1650379

    [4]

    桂幸民, 滕金芳, 刘宝杰等. 航空压气机气动热力学理论与应用[M]. 上海: 上海交通大学出版社, 2014.

    GUI X M, TENG J F, LIU B J, et al. Compressor aerothermodynamics and its applications in aircraft engines[M]. Shanghai: Shanghai Jiao Tong University Press, 2014.

    [5]

    GALLIMORE S J. Axial flow compressor design[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 1999, 213(5): 437-449. doi:10.1243/0954406991522680

    [6]

    NASA. 轴流压气机气动设计[M]. 秦鹏, 译. 北京: 国防工业出版社, 1975.

    [7]

    JOHNSEN I A, BULLOCK R O. Aerodynamic design of axial-flow compressors[R]. NASA SP-36, 1965.

    [8]

    HOWELL A R, BONHAM R P. Overall and stage characteristics of axial-flow compressors[J]. Proceedings of the Institution of Mechanical Engineers, 1950, 163(1): 235-248. doi:10.1243/pime_proc_1950_163_026_02

    [9]

    FINGER H B, DUGAN J F J. Analysis of stage matching and off-design performance of multistage axial-flow compressors[R]. NACA RM E52D07, 1952.

    [10]

    MEDEIROS A A, BENSER W A, HATCH J E. Analysis of off-design performance of a 16-stage axial-flow compressor with various blade modifications[R]. NACA RM E52L03, 1953.

    [11]

    GEYE P R, VOIT R P A. Investigation of a high-pressure-ratio eight-stage axial-flow research compressor with two transonic inlet stages. IV-modification of aerodynamic design and prediction of performance[R]. NACA RM E55B28, 1955.

    [12]

    STANDAHAR M R, GEYE P R. Investigation of a high-pressure-ratio eight-stage axial-flow research compressor with two transonic inlet stages. V-preliminary analysis of over all performance of modified compressor[R]. NACA RM E55A03, 1955.

    [13]

    CREVELING H F, CARMODY R H. Axial flow compressor computer program for calculating off-design performance(Program IV)[R]. NASA CR-72427, 1968.

    [14]

    HOWELL A R, CALVERT W J. A new stage stacking technique for axial-flow compressor performance prediction[J]. Journal of Engineering for Power, 1978, 100(4): 698-703. doi:10.1115/1.3446425

    [15]

    STEINKE R J. A computer code for predicting multistage axial-flow compressor performance by a meanline stage-stacking method[R]. NASA-TP-2020, 1982.

    [16]

    VERES J. Axial and centrifugal compressor mean line flow analysis method[C]//Proc of the 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. 2009. doi: 10.2514/6.2009-1641

    [17]

    JACK T K, ELDER R L. A modified stage-stacking method for multi-stage axial flow compressor calculations[J]. International Journal of Scientific & Engineering Research, 2012, 3(3): 1-7. http://www.mendeley.com/research/modified-stagestacking-method-multi-stage-axial-flow-compressor-calculations-pressure-coefficient/

    [18]

    DAHLQUIST A N. Investigation of losses prediction methods in 1D for axial gas turbines[D]. Sweden: Lund University, 1990.

    [19]

    SMITH S L. One-dimensional mean line code technique to calculate stage-by-stage compressor characteristics[D]. Knoxville: University of Tennessee, 1999.

    [20]

    MADADI A, HAJILOUY BENISI A. Performance predicting modeling of axial-flow compressor at design and off-design conditions[C]//Proc of the Volume 6: Turbomachinery, Parts A, B, and C, Anerucab Sicuett of Mechanical Engineers Digital Collection. 2008. doi: 10.1115/gt2008-50550

    [21]

    ASLI M, TOUSI A M. Performance prediction of axial flow turbomachines using a modified one dimensional method[J]. International Journal of Scientific & Engineering Research, 2013, 4(7): 1486-1491. http://ijser.org/researchpaper/Performance-Prediction-of-Axial-Flow-Turbomachines-Using-a-Modified-One-Dimensional-Method.pdf

    [22]

    KIDIKIAN J, REGGIO M. Off-design prediction of transonic axial compressors: part 1-mean-line code and tuning factors[C]//Proc of the Volume 2A: Turbomachinery. American Society of Mechanical Engineers. 2018. doi: 10.1115/gt2018-75124

    [23]

    KIDIKIAN J, REGGIO M. Off-design prediction of transonic axial compressors: part 2-generalized mean-line loss modelling methodology[C]//Proc of the Volume 2A: Turbomachinery. American Society of Mechanical Engineers. 2018. doi: 10.1115/gt2018-75125

    [24]

    MILLER A S. Compressor conceptual design optimization[D]. Atlanta: Georgia Institute of Technology, 2015.

    [25]

    WHITE N M, TOURLIDAKIS A, ELDER R L. Axial compressor performance modelling with a quasi-one-dimensional approach[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2002, 216(2): 181-193. doi:10.1243/09576500260049197

    [26]

    JOHNSON M S. One-dimensional, stage-by-stage, axial compressor performance model[C]//Proc of the Volume 1: Turbomachinery. American Society of Mechanical Engineers. 1991. doi: 10.1115/91-gt-192

    [27]

    ASLI M, TOUSI A M. Performance analysis of axial flow compressor and part load consideration in a gas turbine application[J]. Journal of Thermal Science and Technology, 2013, 8(3): 476-487. doi:10.1299/jtst.8.476

    [28]

    ROZENDAAL A V. A computer program for the coupled implementation of meanline and throughflow methods to simplify the aerodynamic design of multistage axial compressors[D]. Daytona Beach: Embry-Riddle Aeronautical University, 2016.

    [29]

    李志刚, 陶增元, 丁康乐, 等. 一种改进的变几何压气机特性计算方法[J]. 航空发动机, 2004, 30(4): 7-9. doi: 10.3969/j.issn.1672-3147.2004.04.003

    LI Z G, TAO Z Y, DING K L, et al. Simulation of variable geometry compressor characteristics[J]. Aeroengine, 2004, 30(4): 7-9. doi:10.3969/j.issn.1672-3147.2004.04.003

    [30]

    李立君, 黄杰, 唐狄毅, 等. 轴流压气机特性预测[J]. 西北工业大学学报, 2003, 21(1): 71-73. doi: 10.3969/j.issn.1000-2758.2003.01.018

    LI L J, HUANG J, TANG D Y, et al. An accurate method for predicting performance characteristics of multi-stage axial compressor[J]. Journal of Northwestern Polytechnical University, 2003, 21(1): 71-73. doi:10.3969/j.issn.1000-2758.2003.01.018

    [31]

    斯夏依, 钟勇健, 滕金芳, 等. 十级高压压气机气动方案设计的优化[J]. 流体机械, 2016, 44(6): 24-28, 16. doi: 10.3969/j.issn.1005-0329.2016.06.005

    SI X Y, ZHONG Y J, TENG J F, et al. Aerodynamic preliminary design optimization of ten-stage high pressure compressor[J]. Fluid Machinery, 2016, 44(6): 24-28, 16. doi:10.3969/j.issn.1005-0329.2016.06.005

    [32]

    丁伟. 基于多目标遗传算法的轴流压气机气动优化设计技术研究[D]. 西安: 西北工业大学, 2006.

    DING W. Research on aerodynamic optimization design technology of axial flow compressor based on multi-objective genetic algorithm[D]. Xi'an: Northwestern Polytechnical University, 2006.

    [33]

    CAI Y H, WANG H J, TANG D Y, et al. A new method for predicting performance of axial-flow compressor[C]//Proceedings of ASME 1985 Beijing International Gas Turbine Symposium and Exposition. 2015. doi: 10.1115/85-IGT-23

    [34]

    崔凝, 王兵树, 马永光, 等. 变几何多级轴流压气机动态仿真模型的研究与应用[J]. 动力工程, 2007, 27(6): 856-862. doi: 10.3321/j.issn:1000-6761.2007.06.007

    CUI N, WANG B S, MA Y G, et al. Study and application of dynamic simulation models for multistage axial-flow compre-ssors with variable geometry[J]. Journal of Power Engineering, 2007, 27(6): 856-862. doi:10.3321/j.issn:1000-6761.2007.06.007

    [35]

    陈江, 刘太秋, 李孝堂, 等. 五级轴流压气机气动设计数值研究[J]. 工程热物理学报, 2010, 31(6): 943-946. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201006013.htm

    CHEN J, LIU T Q, LI X T, et al. Aerodynamic design of five stage axial compressor by numerical simulation[J]. Journal of Engineering Thermophysics, 2010, 31(6): 943-946. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201006013.htm

    [36]

    黄雄武, 兰发祥, 雷丕霓, 等. 高负荷高效率压气机级特性计算研究[J]. 燃气涡轮试验与研究, 2013, 26(2): 28-32. doi: 10.3969/j.issn.1672-2620.2013.02.008

    HUANG X W, LAN F X, LEI P N, et al. Performance simulation and computation of high loading and high efficiency compressor stage[J]. Gas Turbine Experiment and Research, 2013, 26(2): 28-32. doi:10.3969/j.issn.1672-2620.2013.02.008

    [37]

    钟勇健, 滕金芳, 羌晓青, 等. 级间引气对一维方案压气机流道和性能的影响[J]. 节能技术, 2014, 32(2): 112-115. https://www.cnki.com.cn/Article/CJFDTOTAL-JNJS201402005.htm

    ZHONG Y J, TENG J F, QIANG X Q, et al. Effects of inter-stage bleed rate on compressor flow path and performance by mean line method[J]. Energy Conservation Technology, 2014, 32(2): 112-115. https://www.cnki.com.cn/Article/CJFDTOTAL-JNJS201402005.htm

    [38]

    史磊, 刘波, 张鹏, 等. 商用发动机10级高压压气机一维特性优化设计[J]. 航空动力学报, 2013, 28(7): 1564-1569. doi: 10.13224/j.cnki.jasp.2013.07.031

    SHI L, LIU B, ZHANG P, et al. One-dimensional characteristic optimization design for ten-stage high pressure compressor in commercial engine[J]. Journal of Aerospace Power, 2013, 28(7): 1564-1569. doi:10.13224/j.cnki.jasp.2013.07.031

    [39]

    张军. 多级轴流压气机方案设计与特性计算研究[D]. 北京: 北京理工大学, 2016.

    ZHANG J. Preliminary design and performance calculation for multistage axial flow compressor[D]. Beijing: Beijing Institute of Technology, 2016.

    [40]

    夏凯. 轴流压气机转角气动特性计算的级叠加方法研究[D]. 北京: 中国舰船研究院, 2019.

    XIA K. Stage-stacking method for calculating aerodynamic characteristics of rotating angle of axial compressor[D]. Beijing: China Ship Research and Development Academy, 2019.

    [41]

    PEYVAN A, HAJILOUY BENISI A, TECHNOLOGY S U O, et al. Axial-flow compressor performance prediction in design and off-design conditions through 1-D and 3-D modeling and experimental study[J]. Journal of Applied Fluid Mecha-nics, 2016, 9(7): 2149-2160. doi:10.18869/acadpub.jafm.68.236.25222

    [42]

    WRIGHT P I, MILLER D C. An improved compressor performance prediction model[J]. Proceedings of the Institution of Mechanical Engineers European Conference: Turbomachinery-Latest Developments in a Changing Scene, 1991, 69-82. http://www.zhangqiaokeyan.com/ntis-science-report_other_thesis/02071463893.html

    [43]

    MILLER D C, WASDELL D L. Off-design prediction of compressor blade loss[J]. Proceedings of the Institution of Mechanical Engineers International Conference: Turbomachinery-Efficiency Prediction and Improvement, 1987, 249-260. http://www.researchgate.net/publication/292201970_Off-design_prediction_of_compressor_blade_losses

    [44]

    DAVIS W R. A computer program for analysis and design of the flow in turbomachinery, Part B-loss and deviation correlations[R]. Carleton University Report ME A70-1, 1970.

    [45]

    CUMPSTY N A. Compressor Aerodynamics[M]. Essex: Longman Scientific and Technical, 1989.

    [46]

    彭泽琰, 刘刚, 桂幸民, 等. 航空燃气轮机原理[M]. 北京: 国防工业出版社, 2008.

    [47]

    ROLAND W, MILLAR D A J. Through flow calculations based on matrix inversion: loss prediction[R]. AGARD-CP-195, 1976.

    [48]

    AUNGIER R H, FAROKHI S. Axial-flow compressors: a strategy for aerodynamic design and analysis[J]. Applied Mechanics Reviews, 2004, 57(4): B22. doi:10.1115/1.1786589

    [49]

    SWAN W C. A practical method of predicting transonic-compressor performance[J]. Journal of Engineering for Gas Turbines and Power, 1961, 83(3): 322-330. http://www.researchgate.net/publication/275376095_A_Practical_Method_of_Predicting_Transonic-Compressor_Performance

    [50]

    DENTON J D. The 1993 IGTI scholar lecture: loss mechanisms in turbomachines[J]. Journal of Turbomachinery, 1993, 115(4): 621-656. doi:10.1115/1.2929299

    [51]

    LIEBLEIN S, ROUDEBUSH W H. Theoretical loss relations for low-speed two-dimensional-cascade flow[R]. NACA TN 3662, 1956.

    [52]

    KOCH C C, SMITH L H. Loss sources and magnitudes in axial-flow compressors[J]. Journal of Engineering for Power, 1976, 98(3): 411-424. doi:10.1115/1.3446202

    [53]

    JANSEN W, MOFFATT W C. The off-design analysis of axial-flow compressors[J]. Journal of Engineering for Power, 1967, 89(4): 453-462. doi:10.1115/1.3616712

    [54]

    MILLER G R, LEWIS G W, HARTMANN M J. Shock losses in transonic compressor blade rows[J]. Journal of Engineering for Power, 1961, 83(3): 235-241. doi:10.1115/1.3673182

    [55]

    STORER J A, CUMPSTY N A. Tip leakage flow in axial compressors[J]. Journal of Turbomachinery, 1991, 113(2): 252-259. doi:10.1115/1.2929095

    [56]

    STORER J A, CUMPSTY N A. An approximate analysis and prediction method for tip clearance loss in axial compressors[C]//Proceedings of ASME 1993 International Gas Turbine and Aeroengine Congress and Exposition. 2015. doi: 10.1115/93-GT-140

    [57]

    MELLOR G L, WOOD G M. An axial compressor end-wall boundary layer theory[J]. Journal of Basic Engineering, 1971, 93(2): 300-314. doi:10.1115/1.3425231

    [58]

    BALSA T F, MELLOR G L. The simulation of axial compressor performance using an annulus wall boundary layer theory[J]. Journal of Engineering for Power, 1975, 97(3): 305-317. doi:10.1115/1.3445989

    [59]

    HIRSCH C. Flow prediction in axial flow compressors including end-wall boundary layers[C]//Proceedings of ASME 1976 In-ternational Gas Turbine and Fluids Engineering Conference. 2015. doi: 10.1115/76-GT-72

    [60]

    HVBNER J, FOTTNER L. Influence of tip-clearance, aspect ratio, blade loading, and inlet boundary layer on secondary losses in compressor cascades[C]//Proceedings of ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition. 2015. doi: 10.1115/96-GT-505

    [61]

    KOCH C C. Stalling pressure rise capability of axial flow compressor stages[J]. Journal of Engineering for Power, 1981, 103(4): 645-656. doi:10.1115/1.3230787

    [62]

    McKENZIE A B. Axial flow fans and compressors: aerodynamic design and performance[M]. Burlington: Ashgate Publishing Company, 1997.

  • 加载中

(11)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2020-07-18
修回日期:  2020-10-12
刊出日期:  2021-04-01

目录