摘 要: | 针对高杂波、电子干扰环境,在量测驱动的多目标滤波框架下提出了一种基于决策不确定性的传感器管理方法。首先,根据部分可观测马尔科夫决策过程的理论,给出了基于Rényi信息增量的传感器管理一般方法。其次,综合考虑决策过程的信息完整性、信息质量、信息的内涵等因素,在量测驱动的自适应滤波框架下,基于目标运动态势评估多目标决策不确定性水平,并选取最大决策不确定性目标。最后,以最大决策不确定性目标的信息增量最大化为准则进行传感器分配方案的求解。仿真实验表明所提方法能够有效抑制电子干扰、杂波对多目标跟踪及传感器分配的影响,与基于威胁的传感器管理方法相比,所提方法的平均最优子模式分配(OSPA)距离及平均计算时长均显著降低,且在高杂波、电子干扰情形下具有较高的可靠性。
|