首页 | 本学科首页   官方微博 | 高级检索  
     

基于马尔可夫蒙特卡洛法的系统辨识方法研究及应用
引用本文:曹瑞,刘燕斌,陆宇平. 基于马尔可夫蒙特卡洛法的系统辨识方法研究及应用[J]. 宇航学报, 2022, 43(4): 423-433. DOI: 10.3873/j.issn.1000-1328.2022.04.004
作者姓名:曹瑞  刘燕斌  陆宇平
作者单位:1. 南京航空航天大学自动化学院,南京 211106;2. 南京航空航天大学航天学院,南京 211106
基金项目:国家自然基金(11572149,61873126);;中央高校基本科研业务费专项资金(NS2021061);;中国博士后科学基金(2020M681586);;江苏省自然科学基金(BK20200437);
摘    要:
提出了基于马尔可夫蒙特卡洛(MCMC)的贝叶斯辨识方法,以解决高超声速飞行器系统辨识中复杂动力学模型转换为简单或稀疏模型所带来的不确定性问题,以及存在的训练数据大和积分难处理的问题。该方法将数据退火算法引入MCMC中,不仅解决了MCMC易陷入局部最优的问题,并且将数据退火与“高信息训练数据”的概念相结合,能够以较低的计算成本分析大数据集。此外,该方法可以对参数估计过程中存在的不确定性进行量化,获得未知参数的最优估计值。通过仿真实验,验证了提出的系统辨识方法的有效性,辨识出的模型能够有效应用于控制器设计之中,并获得较好的控制效果。

关 键 词:高超声速飞行器  系统辨识  马尔可夫蒙特卡洛(MCMC)  贝叶斯  不确定性  
收稿时间:2021-06-28

Research and Application of System Identification Method Based on Markov Chain Monte Carlo Method
CAO Rui,LIU Yan bin,LU Yu ping. Research and Application of System Identification Method Based on Markov Chain Monte Carlo Method[J]. Journal of Astronautics, 2022, 43(4): 423-433. DOI: 10.3873/j.issn.1000-1328.2022.04.004
Authors:CAO Rui  LIU Yan bin  LU Yu ping
Affiliation:1. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;2. College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
Abstract:
In this paper, a Bayesian identification method based on Markov chain Monte Carlo is proposed to solve the problems of hypersonic vehicle system identification, including the uncertainties caused by transforming complex dynamic model into simple or sparse model, large training data and complex integration. In this method, the data annealing algorithm is introduced into MCMC, which not only solves the problem that MCMC is easy to fall into local optimization, but also combines data annealing with the concept of “high information training data” analyze large data sets with low computational cost. In addition, this method can quantify the uncertainty in the process of parameter estimation and obtain the optimal estimation value of unknown parameters. Through simulation experiments, the effectiveness of this system identification method proposed in this paper is verified, and the identified can be used in controller design and has good control effect.
Keywords:Hypersonic vehicle   System identification   Markov chain Monte Carlo (MCMC)   Bayesian   Uncertainty  
点击此处可从《宇航学报》浏览原始摘要信息
点击此处可从《宇航学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号