首页 | 本学科首页   官方微博 | 高级检索  
     

基于神经网络的重力卸载系统控制器设计
引用本文:孙一斌,王丽梅. 基于神经网络的重力卸载系统控制器设计[J]. 中国空间科学技术, 2021, 41(1): 113-119. DOI: 10.16708/j.cnki.1000-758X.2021.0014
作者姓名:孙一斌  王丽梅
作者单位:沈阳工业大学电气工程学院,沈阳110870
摘    要:吊挂系统是地面模拟空间机械臂重力卸载试验的重要方法之一.针对传统PID控制方式动作响应慢、鲁棒性差等缺点,提出了一种基于径向基函数(RBF)神经网络的智能控制方式.该方式有很强的非线性拟合能力,且学习规则简单,可映射任意复杂的非线性关系,便于计算机实现.利用该特性,设计了一种重力卸载精度较PID控制方式更高的控制器.该...

关 键 词:吊挂  重力卸载  梯度下降法  最小二乘法  RBF神经网络

Design of controller for gravity unloading system based on neural network
SUN Yibin,WANG Limei. Design of controller for gravity unloading system based on neural network[J]. Chinese Space Science and Technology, 2021, 41(1): 113-119. DOI: 10.16708/j.cnki.1000-758X.2021.0014
Authors:SUN Yibin  WANG Limei
Affiliation:School of Electrical Engineering, Shenyang University of Technology, Shenyang110870, China
Abstract:The hanging system is one of the important methods to simulate the gravity unloading experiment of a space manipulator on the ground. To overcome the shortcomings of slow response and poor robustness of traditional PID control modes, an intelligent control method based on radial basis function (RBF) neural network was presented. This method has strong non-linear fitting ability and simple learning rules.It can map any complex nonlinear relationship, and is convenient for computer implementation. Taking advantage of this feature, a controller with higher precision of gravity unloading than PID control was designed. The control model identified by the controller using orthogonal least squares method, updates the weight RBF neural network by using a gradient descent method under the mathematical model of the servo motor with load. Finally, the simulation image of Matlab was obtained by writing s-function. Compared with PID control method, the simulation results have fast response, strong robustness and higher accuracy of gravity unloading (98%).
Keywords:hanging  gravity unloading  gradient descent method  least square method  RBF neural network  
点击此处可从《中国空间科学技术》浏览原始摘要信息
点击此处可从《中国空间科学技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号