首页 | 本学科首页   官方微博 | 高级检索  
     

叶片式涡流发生器对压缩拐角流动分离的控制
引用本文:胡万林,于剑,刘宏康,赵渊,阎超. 叶片式涡流发生器对压缩拐角流动分离的控制[J]. 航空学报, 2018, 39(7): 122049-122049. DOI: 10.7527/S1000-6893.2018.22049
作者姓名:胡万林  于剑  刘宏康  赵渊  阎超
作者单位:北京航空航天大学 航空科学与工程学院, 北京 100083
摘    要:采用基于k-ω湍流模型的雷诺平均Navier-Stokes(RANS)方程方法,研究了叶片式涡流发生器(VG)对于马赫数Ma=2.9时24°压缩拐角边界层分离的控制作用。计算结果表明:叶片式涡流发生器诱发的流向涡,是控制拐角处边界层分离的主要因素,流向涡强度越大控制效果越好。流向涡增大了主流与边界层内的动量输运,沿壁面法向速度型更加饱满,并使得压缩拐角处的二维分离转变为三维分离,改变了激波边界层干扰的结构,分离区长度减小了39.68%。相比于相向旋转,同向旋转叶片式涡流发生器改善了分离区内的压力分布,分离区总长度减小量相当,但分离点距转折点处的长度更短,且系统阻力增量更小。对于相向旋转叶片式涡流发生器,后缘高度增大,分离区总长度减小,系统阻力增量先减小后增大;相向旋转叶片间距越大,分离区总长度越小,系统阻力增量越大;同向旋转叶片间距越大,分离区总长度越大,系统阻力增量越小。高度对叶片式涡流发生器诱发的流向涡强度起主要作用,异向与同向叶片间距的影响较小。

关 键 词:涡流发生器  压缩拐角  流向涡  边界层分离  激波边界层干扰  
收稿时间:2018-01-26
修稿时间:2018-04-03

Control of compression ramp flow separation via vane vortex generator
HU Wanlin,YU Jian,LIU Hongkang,ZHAO Yuan,YAN Chao. Control of compression ramp flow separation via vane vortex generator[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(7): 122049-122049. DOI: 10.7527/S1000-6893.2018.22049
Authors:HU Wanlin  YU Jian  LIU Hongkang  ZHAO Yuan  YAN Chao
Affiliation:School of Aeronautic Science and Engineering, Beihang University, Beijing 100083, China
Abstract:The Reynolds-Averaged Navier-Stokes (RANS) equation method based on the k-ω turbulence model is used to study the control of the boundary layer separation at 24° compression ramp for Ma=2.9 via the vane Vortex Generator (VG). The calculation results show that the streamwise vortex generated by the vortex generator is the main factor that controls the separation of the boundary layer, and the greater the intensity of the streamwise vortex is, the better the control effect will be. The streamwise vortex increases the momentum transport of the mainstream and the boundary layer. The velocity profile along the wall normal is fuller and the two-dimensional separation at the corner is transformed into three-dimensional separation. The structure of the shock wave-boundary layer interaction is changed, with the total length of the separation zone decreasing by 39.68%. Compared with the counter-rotating VG, the co-rotating VG is more beneficial in improving the wall pressure distribution at the corner. The co-rotating VG can reduce a similar amount of total length of the separation zone to the counter-rotating VG, but can result in shorter length between the separation point and turning point and smaller increment of system drag than the counter-rotating VG. In the case of a counter-rotating VG, as the height of the trailing edge increases, the total length of the separation zone decreases and the increment of system drag decreases first and then increases slightly. The larger the distance between the counter-rotating blades is, the smaller the total length of the separation zone will be, the bigger the increment of system drag will be. The larger the distance between the co-rotating blades is, the larger the total length of the separation zone will be, and the smaller the increment of system drag will be. The height of the blade has a main influence on the streamwise vortex induced by the vane VG, and the influence of the space between the blades is negligible.
Keywords:vortex generator  compression ramp  streamwise vortex  boundary layer separation  shock wave-boundary layer interaction  
本文献已被 CNKI 等数据库收录!
点击此处可从《航空学报》浏览原始摘要信息
点击此处可从《航空学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号