首页 | 本学科首页   官方微博 | 高级检索  
     

压气机过渡段造型及三维数值模拟
引用本文:屠秋野,陈劼,蒋平,严红明,蔡元虎. 压气机过渡段造型及三维数值模拟[J]. 航空动力学报, 2015, 30(6): 1414-1422. DOI: 10.13224/j.cnki.jasp.2015.06.017
作者姓名:屠秋野  陈劼  蒋平  严红明  蔡元虎
作者单位:1. 西北工业大学 动力与能源学院, 西安 710072;
摘    要:提出一种基于S形曲线压气机过渡段造型方法.该方法将过渡段造型归结为S形内壁曲线拐点相对位置,面积分布率极值及其极值点相对位置3个几何控制因素.并采用此方法构造了一系列压气机过渡段,并针对这些过渡段进行三维数值模拟.结果表明:面积分布率极值是影响过渡段性能最重要的因素;可以通过调整面积分布率极值来控制过渡段最大面积处相对马赫数,减小外壁气流附面层厚度及支板形成的低压尾迹区;同时,配合变化较陡的内壁造型和合理的面积分布率曲线极值点相对位置,可以改善外壁形状,抑制附面层变厚.对于所研究的过渡段,内壁拐点相对位置为0.18,面积分布率极值点相对位置为0.20,相对马赫数为0.65时,总压损失最小. 

关 键 词:过渡段   造型   S形曲线   总压损失   三维数值模拟
收稿时间:2013-12-25

Geometric modeling and 3-D numerical simulation for gooseneck of compressor
TU Qiu-ye,CHEN Jie,JIANG Ping,YAN Hong-ming and CAI Yuan-hu. Geometric modeling and 3-D numerical simulation for gooseneck of compressor[J]. Journal of Aerospace Power, 2015, 30(6): 1414-1422. DOI: 10.13224/j.cnki.jasp.2015.06.017
Authors:TU Qiu-ye  CHEN Jie  JIANG Ping  YAN Hong-ming  CAI Yuan-hu
Affiliation:1. School of Power and Energy, Northwestern Polytechnical University, Xi'an 710072;2. Collaborative Innovation Center for Advanced Aero-Engine, Beijing 100191, China;3. Commercial Aircraft Engine Company Limited, Aviation Industry Corporation of China, Shanghai 200241, China
Abstract:The employed S-shaped polynomial curves as the basis of the gooseneck of compressor geometric modeling. The method used the relative location of S-shaped inflection point of inner wall curve, the peak point and its value of the area distribution rate to control the gooseneck geometrics modeling. A series models were constructed from the baseline gooseneck modeling to analyze with 3-D numerical simulation. The results indicate that the peak value of area distribution rate has the most important effects on the total pressure loss of gooseneck. An relative Mach number can be obtained by changing the peak value of area distribution in order to reduce the flow separation near the outer wall and after the struts.Meanwhile inner walls with large curvature near the entrance of gooseneck modeling, and area distributions rate with an appropriate position of peak point can improve the streamline of outer wall. For example, the total pressure loss of gooseneck reached its minimum at relative location of inflection point of inner wall of 0.18, and relative location of peak point of area distribution rate of 0.20 at relative Mach number of 0.65.
Keywords:gooseneck  geometric modeling  S-shaped polynomial curve  total pressure loss  3-D numerical simulation
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《航空动力学报》浏览原始摘要信息
点击此处可从《航空动力学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号