首页 | 本学科首页   官方微博 | 高级检索  
     

基于PCA和WPSVM的航天器电特性识别方法
引用本文:李可,刘祎,杜少毅,孙毅,王浚. 基于PCA和WPSVM的航天器电特性识别方法[J]. 北京航空航天大学学报, 2015, 41(7): 1177-1182. DOI: 10.13700/j.bh.1001-5965.2014.0482
作者姓名:李可  刘祎  杜少毅  孙毅  王浚
作者单位:1.北京航空航天大学 航空科学与工程学院, 北京 100191
基金项目:航空科学基金(2012XX1043),中央高校基本科研业务费专项资金(YWF-14-HKXY-017)
摘    要:针对航天器电特性监测系统识别过程中存在测试数据量大、特征维数高、样本少、计算速度慢和识别率低等问题,提出基于主成分分析(PCA)的特征提取和加权近似支持向量机(WPSVM)的在线故障诊断方法.实现了对信号故障特征的主成分分析、选择和提取,并对高维特征数据实现了降维,提高了航天器电特性在线故障诊断的准确性和速度.针对PCA中的结果选取问题,提出运用数据贡献度阈值进行数据截取的方法,有效地保证了数据的有效性与一致性.结果表明:该方法充分利用了航天器电特性监测系统的有用数据特征,有效提高了识别的精度,且计算时间较短,效率较高. 

关 键 词:航天器   主成分分析(PCA)   降维   小样本   支持向量机(SVM)   电特性识别
收稿时间:2014-07-31

Spacecraft electrical characteristics identification method based on PCA feature extraction and WPSVM
LI Ke,LIU Yi,DU Shaoyi,SUN Yi,WANG Jun. Spacecraft electrical characteristics identification method based on PCA feature extraction and WPSVM[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(7): 1177-1182. DOI: 10.13700/j.bh.1001-5965.2014.0482
Authors:LI Ke  LIU Yi  DU Shaoyi  SUN Yi  WANG Jun
Affiliation:1.School of Aeronautic Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China2. Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an 710049, China3. China Academy of Space Technology, Beijing 100194, China
Abstract:To solve the problems of large amount of unlabeled test data, high dimension characteristics, slow computing speed and low recognition rate during the spacecraft electrical characteristics identification process of monitoring system, an on-line identification algorithm based on principal component analysis (PCA) feature extraction and weighted proximal support vector machine (WPSVM) was proposed. The principal component analysis is used for feature selection and extraction during complex signal analysis process, to reduce the characteristics dimension and improve the speed of the spacecraft electrical on-line identification. In order to resolve the PCA results selection problem, our team put forward data capture contribution method by using threshold to capture data, effectively guarantee the validity and consistency of the data. The experimental results indicate that this method we proposed can get better spacecraft electrical characteristics data feature, improve the accuracy of identification, and shorten the compute-time with high efficiency at the same time.
Keywords:spacecraft  principal component analysis (PCA)  dimensional-reduction  small sample  support vector machine (SVM)  electrical characteristics identification
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《北京航空航天大学学报》浏览原始摘要信息
点击此处可从《北京航空航天大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号