首页 | 本学科首页   官方微博 | 高级检索  
     

时间序列法在临近空间大气风场预报中的应用
引用本文:刘涛, 肖存英, 胡雄, 涂翠, 杨钧烽, 徐轻尘. 时间序列法在临近空间大气风场预报中的应用[J]. 空间科学学报, 2018, 38(2): 211-220. doi: 10.11728/cjss2018.02.211
作者姓名:刘涛  肖存英  胡雄  涂翠  杨钧烽  徐轻尘
作者单位:1. 中国科学院国家空间科学中心 北京 100190;;;2. 中国科学院大学 北京 100049
基金项目:国家重点研发计划项目资助(2016YFB0501503)
摘    要:受多种因素影响,临近空间大气环境要素复杂多变,预报难度很大.本文采用时间序列法中的自回归滑动平均(ARMA)模型对临近空间大气风场开展统计预报方法研究,基于廊坊(39.4°N,116.7°W)中频雷达在88km高度的大气纬向风数据开展预报试验.本次预报试验的样本数据为2015年9月24日至10月24日风场数据,利用过去7天数据对未来第8天风场数据进行预报.试验结果显示,ARMA模型对临近空间大气风场预报有一定的适用性.当风场变化规律性较强,即样本数据风场呈现出比较显著的24h周期性变化时,ARMA模型预报效果较好;当风场发生突变时,预报效果变差.与实测数据的对比结果表明,ARMA模型预报结果的误差在9~27m·s-1,预报效果优于同阶自回归(AR)模型,略优于高阶AR模型.

关 键 词:临近空间   大气风场   时间序列法   ARMA模型   预报
收稿时间:2017-02-20
修稿时间:2017-08-13

Application of Time Series Method in Forecasting Near-space Atmospheric Windormalsize
LIU Tao, XIAO Cunying, HU Xiong, TU Cui, YANG Junfeng, XU Qingchen. Application of Time Series Method in Forecasting Near-space Atmospheric Windormalsize[J]. Chinese Journal of Space Science, 2018, 38(2): 211-220. doi: 10.11728/cjss2018.02.211
Authors:LIU Tao  XIAO Cunying  HU Xiong  TU Cui  YANG Junfeng  XU Qingchen
Affiliation:1. National Space Science Center, Chinese Academy of Sciences, Beijing 100190;;;2. University of Chinese Academy of Sciences, Beijing 100049
Abstract:Due to many factors, near-space environment is complex and variable. Atmospheric environmental elements are hard to be forecasted. In this paper time series method is applied to the near-space wind forecasting. Autoregressive Moving Average (ARMA) model is adopted. The zonal wind data at 88km altitude of Langfang (39.4°N, 116.7°W) MF radar form September 24 to October 24, 2015 is used for the forecasting test. In this test the data of past 7 days was used to forecast the data of the 8th day. Results suggest that ARMA model has certain applicability in forecasting the near-space atmospheric wind. The forecast effect is better when the winds have stronger regularity of change, i.e., when the sample data show a significant 24-hour cycle, the forecast effect is better, and is worse when the winds have a mutation. Compared with the observed data, results show that the forecast error of ARMA model is 9~27m·s-1, and the forecast result of ARMA model is better than that of AR model with the same order, and is slightly better than that of higher-order AR model. 
Keywords:Near space  Atmospheric wind  Time series method  ARMA model  Forecast
本文献已被 CNKI 等数据库收录!
点击此处可从《空间科学学报》浏览原始摘要信息
点击此处可从《空间科学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号