首页 | 本学科首页   官方微博 | 高级检索  
     

基于MODPSO-GSA的协同空战武器目标分配
引用本文:顾佼佼,赵建军,颜骥,陈学东. 基于MODPSO-GSA的协同空战武器目标分配[J]. 北京航空航天大学学报, 2015, 41(2): 252-258. DOI: 10.13700/j.bh.1001-5965.2014.0119
作者姓名:顾佼佼  赵建军  颜骥  陈学东
作者单位:1.海军航空工程学院 科研部, 烟台 264001
基金项目:国家自然科学基金资助项目(61102167,61105165);青年科学基金资助项目(61002006);航空科学基金资助项目(20135184008)
摘    要:提出基于多目标决策理论的协同空战武器目标分配模型,并用进化多目标优化算法求解.空战是一个多阶段攻防过程,针对多数空战武器目标分配采用一次性完全分配、不考虑火力资源消耗等不足,构建多目标决策模型,在达到毁伤门限的前提下,同时对一次攻击后使敌编队的总期望剩余威胁最小和分配导弹消耗量最小两个目标函数寻优.提出用多目标离散粒子群-引力搜索算法(MODPSO-GSA)求解分配模型,该混合进化多目标优化算法结合二者优点,具有稳定的全局搜索能力并保证收敛到Pareto前沿.该算法可求得满足毁伤门限的不同耗弹量的分配方案最优解集以供指挥员决策参考.仿真算例验证了新模型及所提出MODPSO-GSA进化多目标优化求解算法的有效性. 

关 键 词:目标分配   多目标决策   进化多目标优化   粒子群   引力搜索   Pareto前沿
收稿时间:2014-03-12

Cooperative weapon-target assignment based on multi-objective discrete particle swarm optimization-gravitational search algorithm in air combat
GU Jiaojiao,ZHAO Jianjun,YAN Ji,CHEN Xuedong. Cooperative weapon-target assignment based on multi-objective discrete particle swarm optimization-gravitational search algorithm in air combat[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(2): 252-258. DOI: 10.13700/j.bh.1001-5965.2014.0119
Authors:GU Jiaojiao  ZHAO Jianjun  YAN Ji  CHEN Xuedong
Affiliation:1.Department of Scientific Research, Naval Aeronautical and Astronautical University, Yantai 264001, China2. The 91352 Army, Weihai 264208, China
Abstract:An air combat weapon-target assignment (WTA) model based on multi-objective decision theory with a hybrid evolutionary multi-objective optimization algorithm solver was proposed. Air combat is a multi-stage process of attack-defense countermeasure, existing WTA models are based on disposable fully allocated assignment without considering the missile consumption, which does not conform to the actual air combat process. The minimum of total expected remaining threats and total consumption of missiles were selected as two objectives functions of the multi-objective decision model, with the premise of reaching damage threshold. The hybrid multi-objective discrete particle swarm optimization-gravitational search algorithm (MODPSO-GSA) was proposed to handle the model, which possesses stable global search capacity and promises to converge to Pareto frontier. A Pareto optimal solution set with damage threshold met can be obtained, which offers decision reference to the commander. Simulation results verify that the model is of advantage and the proposed MODPSO-GSA is effective.
Keywords:weapon target assignment  multi-objective decision making  evolutionary multi-objective optimization  particle swarm optimization  gravitational search  Pareto frontier
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《北京航空航天大学学报》浏览原始摘要信息
点击此处可从《北京航空航天大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号