首页 | 本学科首页   官方微博 | 高级检索  
     

基于生成对抗网络的空间卫星低照度图像增强
引用本文:陈榆琅,高晶敏,张科备,张洋. 基于生成对抗网络的空间卫星低照度图像增强[J]. 中国空间科学技术, 2021, 41(3): 16-23. DOI: 10.16708/j.cnki.1000.758X.2021.0033
作者姓名:陈榆琅  高晶敏  张科备  张洋
作者单位:1 北京信息科技大学自动化学院,北京1001922 北京控制工程研究所,北京100190
基金项目:国防科工局稳定支持项目(HTKJ2019KL502008);“十三五”民用航天技术预先研究项目(D020103、D030105)
摘    要:针对空间低照度成像条件下卫星光学图像信息受损严重的问题,提出了一种基于生成对抗网络的空间卫星低照度图像增强方法,提高了图像的平均亮度及对比度,恢复图像细节信息,为图像识别等图像处理技术提供更高质量的数据信息.首先,设计了一种密集连接的生成器,加强了各特征提取阶段中的信息传递以及多层特征的融合,减少了特征信息的损耗,更好...

关 键 词:低照度图像增强  生成对抗网络  非配对训练  密集连接  相对辨别器
收稿时间:2020-07-28

Low-light image enhancement of space satellites based on GAN
CHEN Yulang,GAO Jingmin,ZHANG Kebei,ZHANG Yang. Low-light image enhancement of space satellites based on GAN[J]. Chinese Space Science and Technology, 2021, 41(3): 16-23. DOI: 10.16708/j.cnki.1000.758X.2021.0033
Authors:CHEN Yulang  GAO Jingmin  ZHANG Kebei  ZHANG Yang
Affiliation:1 School of Automation, Beijing Information Science& Technology University, Beijing 100192, China2 Beijing Institute of Control Engineering, Beijing 100190, China
Abstract:Aiming at the problem of serious information damage of satellite optical images under the low light imaging condition, we proposed a satellite low light image enhancement method based on GAN. The method can improve the average brightness and contrast of images, restore image details, and provide higher quality information for image processing techniques such as image recognition. Firstly, we designed a densely connected generator to strengthen the information propagation and fusion between each feature extraction phase, reduce the loss of feature, and better extract similar semantic information in normal light and low light images. Combining the idea of EnlightenGAN, the global local discriminator structure was introduced to enhance images more naturally. Under the condition of a small number of samples, unpaired training was used to the proposed method, and data enhancement methods such as random scaling and flipping of the input images were applied to improve the training effect and model performance. Finally, the proposed method was validated by simulation. The experimental results show that, under the condition of low illumination, the proposed method reduced NIQE by 1.034 and 0.699 compared with the LIME and EnlightenGAN. The proposed method can preserve more image details, realize higher overall and local brightness, higher contrast, and more natural effects of enhancement.
Keywords:low-light image enhancement  GAN  unpaired training  dense connection  relativistic discriminator  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国空间科学技术》浏览原始摘要信息
点击此处可从《中国空间科学技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号