首页 | 本学科首页   官方微博 | 高级检索  
     

遥感图像飞机目标高效搜检深度学习优化算法
引用本文:郭琳,秦世引. 遥感图像飞机目标高效搜检深度学习优化算法[J]. 北京航空航天大学学报, 2019, 45(1): 159-173. DOI: 10.13700/j.bh.1001-5965.2018.0239
作者姓名:郭琳  秦世引
作者单位:北京航空航天大学自动化科学与电气工程学院,北京,100083;北京航空航天大学自动化科学与电气工程学院,北京,100083
基金项目:国家自然科学基金(U1435220,61731001)
摘    要:为了实现大幅面遥感图像中飞机目标的高效检测与准确定位,通过深度神经网络(DNN)的级联组合,提出了一种新颖的搜寻与检测相集成的飞机目标高效检测算法。首先,运用高性能的端到端DNN网络,进行停机坪与跑道区域的像素级高效精准分割,从而大幅度缩小飞机目标的搜索范围,以降低虚警发生概率,完成飞机目标候选检测区域的快速搜寻。然后,针对分割所得停机坪与跑道区域,借助手工数据集对YOLO网络模型进行迁移式强化训练,一方面可以弥补训练集在样本类型与数据规模上的不足,另一方面借助YOLO网络的强时效性优势对飞机目标的位置进行回归求解,可以显著提高飞机目标的检测效率。停机坪与跑道区域分割DNN网络在分割精度与时效性上具有显著优势,而迁移式强化训练YOLO网络不仅具有很高的检测效率,在检测精度上也能保持良好的性能。通过一系列综合实验与对比分析,验证了提出的搜寻与检测相集成的DNN级联组合式飞机目标高效检测算法的性能优势。 

关 键 词:深度学习  深度神经网络  停机坪与跑道分割  飞机目标检测  大幅面遥感图像
收稿时间:2018-04-27

Deep learning and optimization algorithm for high efficient searching and detection of aircraft targets in remote sensing images
GUO Lin,QIN Shiyin. Deep learning and optimization algorithm for high efficient searching and detection of aircraft targets in remote sensing images[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(1): 159-173. DOI: 10.13700/j.bh.1001-5965.2018.0239
Authors:GUO Lin  QIN Shiyin
Affiliation:School of Automation Science and Electrical Engineering, Beihang University, Beijing 100083, China
Abstract:In order to achieve high-performance detection and accurate positioning of aircraft targets in large-scale remote sensing images, in this paper, a kind of efficient aircraft target detection algorithm based on synthetic integration of searching and detection is presented. First, through the end-to-end deep neural networks (DNN), the efficient and accurate pixel-level segmentation of apron and runway area is achieved so that the searching range of aircraft targets is greatly narrowed and the probability of false alarm is also reduced effectively and the goal of high speed searching of aircraft targets candidate detection areas is achieved accordingly. In view of the segmented areas of apron and runway, the strategy of transfer reinforcement learning is employed to pre-trained YOLO networks with supervised signals of positive datasets by manual labelling. In this way, pre-trained networks can make up the deficiency of capacity of manual data sets, and the advantage of real-time property of YOLO networks can also be utilized to deal with the classification and locations of aircraft targets so as to achieve a satisfied solution of regression problems and promote the efficiency of detection significantly. It is obvious that the apron and runway segmentation with DNN networks can play important role in getting performance superiority of high precision and efficiency. Meanwhile, YOLO networks based on transfer reinforcement learning not only possess the characteristics of high efficiency, but also maintain the precision of detection at a high level. A series of comprehensive experiments and comparative analyses verify the effectiveness and good performance of the proposed searching and detection algorithm of aircraft targets with DNN cascade combination and synthetic integration.
Keywords:deep learning  deep neural networks  apron and runway segmentation  aircraft target detection  large-scale remote sensing image
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《北京航空航天大学学报》浏览原始摘要信息
点击此处可从《北京航空航天大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号