首页 | 本学科首页   官方微博 | 高级检索  
     

基于双层K近邻算法航站楼短时客流量预测
引用本文:邢志伟,何川,罗谦,蒋祥枫,刘畅,丛婉. 基于双层K近邻算法航站楼短时客流量预测[J]. 北京航空航天大学学报, 2019, 45(1): 26-34. DOI: 10.13700/j.bh.1001-5965.2018.0259
作者姓名:邢志伟  何川  罗谦  蒋祥枫  刘畅  丛婉
作者单位:中国民航大学电子信息与自动化学院,天津300300;中国民用航空局第二研究所,成都610041;中国民用航空局第二研究所,成都610041;民航成都信息技术有限责任公司,成都611430;中国民用航空局第二研究所,成都,610041
基金项目:国家自然科学基金(U1533203);民航安全能力建设资金(FDSA0032);四川省科技支撑计划(2016GZ0068);成都市战略性新兴产品研发补贴项目(2015-CP01-00158-GX)
摘    要:航站楼离港客流量在短时期内呈现准周期性规律变化,易受航班计划、天气等多种因素影响,表现出复杂的非线性特点。为了实现航站楼短时客流量的准确预测,在传统K近邻(KNN)算法基础上增加了航班计划状态模式匹配方法,以航班计划包含的多维属性作为特征选取相似历史运营日作为预测基准向量,建立基于航站楼短时客流量预测的双层K近邻模型。通过实例分析,与ARIMA模型和传统K近邻模型等进行比较,证明双层K近邻模型预测误差更小,精度更高,模型拟合度相对传统K近邻模型提高了8%~10%,为航站楼短时客流量精确预测提供了一种新的解决思路。 

关 键 词:航站楼客流量  短时预测  模式匹配  预测模型  双层K近邻
收稿时间:2018-05-07

Terminal building short-term passenger flow forecast based on two-tier K-nearest neighbor algorithm
XING Zhiwei,HE Chuan,LUO Qian,JIANG Xiangfeng,LIU Chang,CONG Wan. Terminal building short-term passenger flow forecast based on two-tier K-nearest neighbor algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(1): 26-34. DOI: 10.13700/j.bh.1001-5965.2018.0259
Authors:XING Zhiwei  HE Chuan  LUO Qian  JIANG Xiangfeng  LIU Chang  CONG Wan
Affiliation:1.Electronic Information and Automation Institute, Civil Aviation University of China, Tianjin 300300, China2.The Second Research Institute of Civil Aviation Administration of China, Chengdu 610041, China3.Civil Aviation Information Technology Co., Ltd., Chengdu 611430, China
Abstract:Outbound passenger flow of terminal building shows the quasi-periodic variation in a short period of time and also shows complex nonlinear characteristics because of many factors such as flight schedule and weather. In order to accurately predict the short-term passenger flow of terminal building, the flight schedule state pattern matching procedure is added on the basis of the traditional K-nearest neighbor (KNN) algorithm. The flight schedule including multi-dimensional attributes is taken as a feature to select historical similar operation days as forecast reference vectors. The two-tier K-nearest neighbor model based on terminal building short-term passenger flow forecast is built. Through instance analysis and comparison with ARIMA model and traditional K-nearest neighbor model, it is proved that two-tier K-nearest neighbor model has smaller prediction error and higher precision, and the model fitting degree increases by 8%-10% compared with traditional K-nearest neighbor model. Thus the model provides a new solution for accurately forecasting terminal building short-term passenger flow.
Keywords:passenger flow of terminal building  short-term forecast  pattern matching  forecast model  two-tier K-nearest neighbor
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《北京航空航天大学学报》浏览原始摘要信息
点击此处可从《北京航空航天大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号