抗控制饱和的鲁棒非线性飞行控制方法 |
| |
引用本文: | 孙冰,陈伟. 抗控制饱和的鲁棒非线性飞行控制方法[J]. 北京航空航天大学学报, 2021, 47(12): 2475-2483. DOI: 10.13700/j.bh.1001-5965.2020.0473 |
| |
作者姓名: | 孙冰 陈伟 |
| |
作者单位: | 1.吉林化工学院 信息与控制工程学院, 吉林 132022 |
| |
基金项目: | 吉林省教育厅“十三五”科学技术基金JJKH20200252KJ |
| |
摘 要: | 飞行器在大包线范围内作机动飞行时,其舵面和发动机易达到饱和,该现象不仅会对闭环系统的稳定性造成影响,而且会大大缩短发动机等关键部件的使用寿命。针对该问题,设计了一种抗饱和非线性飞行控制方法。首先,建立飞行器的严格反馈非线性模型。然后,采用自适应反步设计思想设计得到舵控和发动机转速控制指令,由径向基函数(RBF)网络对建模误差进行逼近。针对控制饱和问题,分别设计了相应的抗饱和动态补偿系统。通过建立闭环控制系统的李雅普诺夫函数,由稳定性理论确定得到RBF网络的更新权值和抗饱和动态补偿系统的结构参数,确保所设计的闭环控制系统全局稳定。最后,仿真结果表明,在出现控制饱和时,抗饱和动态补偿系统可对控制指令进行实时修正,帮助系统较快脱离饱和状态,系统饱和时间缩短了30%~60%,同时具有较高的指令跟踪精度。
|
关 键 词: | 飞行器 控制饱和 抗饱和补偿 径向基函数(RBF)网络 非线性控制 |
收稿时间: | 2020-08-28 |
Robust nonlinear flight control method against control saturation |
| |
Affiliation: | 1.School of Information and Control Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China2.Institute of Systems Engineering, China Academy of Engineering Physics, Mianyang 621900, China |
| |
Abstract: | When the aerocraft is maneuvering in a large envelope, its rudder surface and engine are easily saturated. This phenomenon will not only affect the stability of the closed-loop system, but also greatly shorten the service life of the engine and other key components. To solve this problem, a nonlinear flight control method against saturation was designed. First, the strict feedback nonlinear model of the aerocraft was established. Then, the rudder control and engine speed control commands were designed by using adaptive backstepping design method, and the modeling error was approximated by Radial Basis Function (RBF) network. To solve the control saturation problem, the corresponding anti-saturation dynamic compensation systems were designed respectively. By establishing the Lyapunov function of the closed-loop system, the update weights of RBF network and the structural parameters of anti-saturation dynamic compensation system were determined by stability theory, which ensures the global stability of the designed closed-loop control system. Finally, the simulation results show that, when the control saturation occurs, the anti-saturation compensation system can modify the control command in real time, which helps the system to get out of saturation state quickly and shorten the saturation time by 30%-60%, with high command tracking accuracy. |
| |
Keywords: | |
|
| 点击此处可从《北京航空航天大学学报》浏览原始摘要信息 |
|
点击此处可从《北京航空航天大学学报》下载全文 |
|