首页 | 本学科首页   官方微博 | 高级检索  
     

基于VMD的自适应复合多尺度模糊熵及其在滚动轴承故障诊断中的应用
引用本文:郑近德,姜战伟,代俊习,潘紫微. 基于VMD的自适应复合多尺度模糊熵及其在滚动轴承故障诊断中的应用[J]. 航空动力学报, 2017, 32(7): 1683-1689. DOI: 10.13224/j.cnki.jasp.2017.07.019
作者姓名:郑近德  姜战伟  代俊习  潘紫微
作者单位:安徽工业大学 机械工程学院,安徽 马鞍山 243032
基金项目:国家自然科学基金(51505002); 安徽省高校自然科学研究重点资助项目(KJ2015A080);安徽工业大学研究生创新研究基金(2016062)
摘    要:提出了一种基于自适应多尺度模糊熵、ILS(迭代拉普拉斯得分)特征选择和粒子群优化支持向量机(PSO-SVM)的滚动轴承故障诊断方法。该方法采用变分模态分解对振动信号进行分解和重构,并计算重构信号的复合多尺度模糊熵;同时采用迭代拉普拉斯得分选择敏感故障特征,并将特征选择结果输入到基于粒子群优化支持向量机的多故障分类器进行识别。将提出的方法应用于滚动轴承试验数据分析。结果表明:该方法对试验数据的故障识别率为100%。并将基于ILS特征选择方法与基于SFS(sequential forward selection)特征选择进行了对比,表明基于SFS特征选择的最高识别率为92.86%,而基于ILS特征选择的故障识别率达到100%。 

关 键 词:滚动轴承   故障诊断   多尺度模糊熵   变分模态分解   特征选择
收稿时间:2016-10-19

VMD based adaptive composite multiscale fuzzy entropy and its application to fault diagnosis of rolling bearing
ZHENG Jinde,JIANG Zhanwei,DAI Junxi,PAN Ziwei. VMD based adaptive composite multiscale fuzzy entropy and its application to fault diagnosis of rolling bearing[J]. Journal of Aerospace Power, 2017, 32(7): 1683-1689. DOI: 10.13224/j.cnki.jasp.2017.07.019
Authors:ZHENG Jinde  JIANG Zhanwei  DAI Junxi  PAN Ziwei
Abstract:A rolling bearing fault diagnosis approach was proposed based on the adaptive multiscale fuzzy entropy, ILS (iterative Laplacian score) and PSO-SVM (particle swarm algorithm optimization support vector machine). In the proposed method, the variational mode decomposition was used for the decomposition and reconstruction. Then composite multiscale entropy fuzzy of the reconstructed signals was calculated. Besides, the iterative Laplacian score algorithm was used for the sensitive fault feature selection and the selected features were input to the PSO-SVM based classifier for training and recognition. Finally, the proposed method was applied to experiment data of rolling bearing. Results showed that the identifying rate of proposed method was 100%. Also, the ILS based feature selection was compared with the SFS (sequential forward selection) method; and the result indicated that the highest identifying fault rate of SFS based method was 92.86% while the identifying fault rate of the ILS based fault diagnosis method reached to 100%.
Keywords:rolling bearing   fault diagnosis   multiscale fuzzy entropy   variational mode decomposition   feature selection
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《航空动力学报》浏览原始摘要信息
点击此处可从《航空动力学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号