首页 | 本学科首页   官方微博 | 高级检索  
     

基于EMD熵特征融合的滚动轴承故障诊断方法
引用本文:向丹,岑健. 基于EMD熵特征融合的滚动轴承故障诊断方法[J]. 航空动力学报, 2015, 30(5): 1149-1155. DOI: 10.13224/j.cnki.jasp.2015.05.016
作者姓名:向丹  岑健
作者单位:广东技术师范学院 自动化学院, 广州 510635
基金项目:广东优秀青年教师培养计划(Yq2013110); 广东省教育厅特色创新项目(自然科学类)(2014KTSCX146); 广东省教育厅科技创新项目(2013KJCX0121); 广东省自然科学基金(2014A030313639)
摘    要:研究了滚动轴承故障诊断单一故障信号的局限性和故障特征的非线性,从信息融合的理论出发,利用非线性动力学参数熵作为特征,提出了基于经验模态分解(EMD)熵特征融合的方法来解决滚动轴承故障诊断问题.首先将原始信号进行EMD,利用EMD的自适应多分辨率的特点计算EMD得到的固有模态函数(IMF)信号的多种熵值,然后采用核主元分析(KPCA)对提取的状态特征进行信息融合,从而得到互补的特征,最后将提取的融合特征通过支持向量机(SVM)进行故障诊断.滚动轴承故障诊断实验表明:该方法结合了EMD、信息熵理论和KPCA强大的非线性处理能力的特点,可以进行滚动轴承故障诊断. 

关 键 词:滚动轴承   故障诊断     核主元分析   支持向量机
收稿时间:2013-11-20

Method of roller bearing fault diagnosis based on feature fusion of EMD entropy
XIANG Dan and CEN Jian. Method of roller bearing fault diagnosis based on feature fusion of EMD entropy[J]. Journal of Aerospace Power, 2015, 30(5): 1149-1155. DOI: 10.13224/j.cnki.jasp.2015.05.016
Authors:XIANG Dan and CEN Jian
Affiliation:School of Automatization, Guangdong Polytechnic Normal University, Guangzhou 510635, China
Abstract:The limitation of single fault signal for roller bearing fault diagnosis and nonlinear relation of fault features were studied. Starting from theory of information fusion, the method based on feature fusion of empirical mode decomposition (EMD) entropy was proposed using nonlinear dynamics parameters of entropy as features to deal with roller bearing fault diagnosis problem. Firstly, EMD was conducted for original signal, and on the basis of the property of adaptive multi-resolution for the EMD, different entropies of the intrinsic mode function (IMF) signal reconstructed by using the EMD were calculated. Secondly, the information fusion of the state features was further implemented by using the kernel principal component analysis (KPCA) to extract the complementary feature. Finally, the support vector machine (SVM) was employed to diagnose the fault by using the extracted fusion features. The experiment of rolling bearing fault diagnosis shows that the proposed method combines EMD, information entropy theory and strong nonlinear processing of KPAC, so it can be used for roller bearing fault diagnosis.
Keywords:roller bearing  fault diagnosis  entropy  kernel principal component analysis  support vector machine
本文献已被 CNKI 等数据库收录!
点击此处可从《航空动力学报》浏览原始摘要信息
点击此处可从《航空动力学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号