首页 | 本学科首页   官方微博 | 高级检索  
     

改进的BP神经网络在飞机防滑刹车系统的应用
引用本文:何恒,吴瑞祥. 改进的BP神经网络在飞机防滑刹车系统的应用[J]. 北京航空航天大学学报, 2004, 30(6): 561-564
作者姓名:何恒  吴瑞祥
作者单位:北京航空航天大学 机械工程及自动化学院, 北京 100083
摘    要:为了在飞机刹车过程中防止打滑和取得最佳刹车效果,提出用BP神经网络构造Sp(最佳滑移率)识别器.为了提高神经网络的学习能力,介绍一种学习步长自适应方法——二阶步长法,讨论了二阶步长法在实际应用中的一些问题并提出了解决方案.在二阶步长法基础上提出了三阶步长法.还提出了合理配置活化函数的方法.综合以上方法对BP算法加以改进,使学习精度和速度都大大提高. 

关 键 词:神经网络   防滑   BP算法   滑移率   飞机刹车
文章编号:1001-5965(2004)06-0561-04
收稿时间:2003-01-22
修稿时间:2003-01-22

Improved BP neural network in design of aircraft antiskid braking system
He HengWu Ruixiang. Improved BP neural network in design of aircraft antiskid braking system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(6): 561-564
Authors:He HengWu Ruixiang
Affiliation:School of Mechanical Engineering and Automation, Beijing University of Aeronautics and Astronautics, Beijing 100083, China
Abstract:The construction of S p (perfect slip ratio) identifier with back-propagation neural network was proposed to prevent skidding and have the best braking effect in the aircraft braking process. In order to improve the learning ability of the network,a type of self-adaptive learning rate method,second-order learning rate method,was introduced. Some problems in the practice of this method were discussed and the solutions were presented. A third-order learning rate method was deduced based on the method. The method of reasonable configuration of active functions was proposed. The combination of these methods renders better learning precision and speed.
Keywords:neural networks  anti-skidding  back-propagation algorithm  slip ratio  aircraft braking
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《北京航空航天大学学报》浏览原始摘要信息
点击此处可从《北京航空航天大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号