旋转部件复杂表面水滴撞击计算

申晓斌, 张志强, 林贵平, 穆作栋, 卜雪琴

申晓斌, 张志强, 林贵平, 穆作栋, 卜雪琴. 旋转部件复杂表面水滴撞击计算[J]. 空气动力学学报, 2016, 34(6): 709-713. DOI: 10.7638/kqdlxxb-2015.0213
引用本文: 申晓斌, 张志强, 林贵平, 穆作栋, 卜雪琴. 旋转部件复杂表面水滴撞击计算[J]. 空气动力学学报, 2016, 34(6): 709-713. DOI: 10.7638/kqdlxxb-2015.0213
Shen Xiaobin, Zhang Zhiqiang, Lin Guiping, Mu Zuodong, Bu Xueqin. Droplet impingement calculation on complex suface of rotating part[J]. ACTA AERODYNAMICA SINICA, 2016, 34(6): 709-713. DOI: 10.7638/kqdlxxb-2015.0213
Citation: Shen Xiaobin, Zhang Zhiqiang, Lin Guiping, Mu Zuodong, Bu Xueqin. Droplet impingement calculation on complex suface of rotating part[J]. ACTA AERODYNAMICA SINICA, 2016, 34(6): 709-713. DOI: 10.7638/kqdlxxb-2015.0213

旋转部件复杂表面水滴撞击计算

基金项目: 中央高校基本科研业务费专项资金(YWF-14-HKXY-008)
详细信息
    作者简介:

    申晓斌(1985-),湖南怀化人,男,讲师,研究方向:飞机结冰与防除冰技术.E-mail:sxb762@163.com

  • 中图分类号: V211.3

Droplet impingement calculation on complex suface of rotating part

  • 摘要: 为模拟旋转体结冰问题的过冷水滴运动及撞击过程,基于欧拉方法及单旋转坐标系模型,建立了三维旋转水滴运动模型,并提出了相应的数值求解方法。采用单旋转坐标系对空气及水滴两相流动过程进行处理,通过引入惯性力,将惯性系下的周期转动边界转换为定常流动边界;利用欧拉方法,使用单向耦合形式描述空气—水滴流场;在单旋转坐标系下,向控制方程内引入科里奥利加速度及牵连加速度,进行非惯性系下欧拉方程的修正,从而描述水滴运动过程;采用有限容积求解器对空气及水滴运动的控制方程组进行求解,通过引入源项定义单旋转坐标系下的惯性力,得到空气流场及水滴场的速度、体积分数分布,进而得到表面水滴撞击特性。采用上述方法对旋转帽罩与叶片模型进行算例分析,结果表明所建立的旋转水滴计算方法有效,对比静止状态表面的结果,旋转对帽罩的水滴撞击特性影响甚小,而对桨叶存在显著影响;由于帽罩具有中心对称的特性,因而旋转带来的切向速度变化对其水滴撞击特性影响不明显;桨叶表面水滴收集系数随旋转角速度增大而增大,同时收集系数在表面的分布会向迎风方向偏移,较大的角速度对应了更为显著的收集系数增幅与偏移现象。
    Abstract: A three-dimensional water impingement model for rotating surface has been established and solved to simulate the process of supercooled water droplet impinging on ice protection surfaces, in which an Eularian method and a single rotating coordinate system were applied. With the single rotating coordinate system, the unsteady cyclically rotating boundary condition was simplified to a steady boundary by introducing the inertial forces; with the Eularian method, the air flow and water droplets flow field were depicted in a one-way coupled form; the Eularian control equations were adjusted in the non-inertial reference system by introducing the Coriolis acceleration and convected acceleration; then a finite volume solver was applied to solve the governing equations of air flow and droplet flow, in which the inertial forces were defined as the source terms of the momentum equation, and the results of velocity and volumetric fraction of air flow and droplet flow were obtained as well as the droplet collection efficiency. With the mentioned method, a rotating model of cowling and blades was simulated for a stationary case and at different rotational speeds. The results show that the rotation has significant influences on the water collection efficiency of the blades. The value of collection efficiency increases with increasing rotational velocity since droplet velocity normal to the surface increases due to the rotation, and the distribution curve shifts to the windward direction; the effect on the cowling is slight, and a distinguishable change of the impingement characteristic has not been caused by the change of the tangential velocity due to the axis-symmetric shape of the cowling.
  • [1] Gent R W. TRAJICE2-a combined water droplet trajectory and ice accretion prediction program for aerofoils[R]. RAE TR 90054, 1990.
    [2] Hedde T, Guffond D. ONERA three-dimensional icing model[J]. AIAA Journal, 1995, 33(6): 1038-1045.
    [3] Morency F, Beaugendre H, Habashi W G. FENSAP-ICE: a study of the effect of ice shapes on droplet impingement[R]. AIAA 2003-1223, 2003.
    [4] Bidwell C. Ice particle transport analysis with phase change for the E3 turbofan engine using LEWICE3D version 3.2[R]. AIAA 2012-3037, 2012.
    [5] Thomas R, Habashi W G. FENSAP-ICE simulation of icing on wind turbine blades, part 1: performance degradation[R]. AIAA 2013-0750, 2013.
    [6] David S, Habashi W G. FENSAP-ICE simulation of complex wind turbine icing events, and comparison to observed performance data[R]. AIAA 2014-1399, 2014.
    [7] Zhao Q Y, Dong W, Zhu J J. Droplets impinging characteristic analysis of the rotating fairing of aero-engine[J]. Gas Turbine Experiment and Research, 2011, 24(4): 32-35. (in Chinese)赵秋月, 董威, 朱剑鋆. 发动机旋转整流帽罩的水滴撞击特性分析[J]. 燃气涡轮试验与研究, 2011, 24(4): 32-35.
    [8] Wang Z G, Lou D C, Guo W. Numerical simulation of water droplet impingement characteristic on aero-engine rotating machinery[J]. Gas Turbine Experiment and Research, 2013, 26(01): 35-39. (in Chinese)王治国, 娄德仓, 郭文. 发动机旋转表面水滴撞击特性数值研究[J]. 燃气涡轮试验与研究, 2013, 26(01): 35-39.
    [9] Yi X, Wang K C, Ma H L, et al. 3-D ementional simulation of droplet collection efficiency in large-scale wind turbine icing[J]. Acta Aerodynamica Sinica, 2013, 31(6): 745-751. (in Chinese)易贤, 王开春, 马洪林, 等. 大型风力机结冰过程水滴收集率三维计算[J]. 空气动力学学报, 2013, 31(6): 745-751.
    [10] Wu M L, Chang S N, Leng M Y, et al. Simulation of droplet impingement characteristics of spinner based on Eulerian method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(9): 1263-1267. (in Chinese)吴孟龙, 常士楠, 冷梦尧, 等. 基于欧拉法模拟旋转帽罩水滴撞击特性[J]. 北京航空航天大学学报, 2014, 40(9): 1263-1267.
    [11] Wang J, Hu Y P, Ji H H, et al. Experiment of ice accretion and shedding on rotating spinner[J]. Journal of Aerospace Power, 2014, 29(06): 1352-1357. (in Chinese)王健, 胡娅萍, 吉洪湖, 等. 旋转整流罩积冰生长与脱落过程的实验[J]. 航空动力学报, 2014, 29(06): 1352-1357.
    [12] ANSYS Inc. ANSYS Fluent 13.0 UDF manual[M]. New Hapmpshire: ANSYS Inc, 2012.
    [13] Shen X B, Lin G P, Yang S H. Analysis on three dimensional water droplets impingement characteristics of engine inlet[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 31(1):1-5. (in Chinese)申晓斌, 林贵平, 杨胜华. 三维发动机进气道水滴撞击特性分析[J]. 北京航空航天大学学报, 2011, 31(1):1-5.
    [14] ANSYS F. Fluent user's manual[J]. Software Release, 2006, (6): 449-456.
    [15] Yang S H, Lin G P, Shen X B. An Eulerian method for water droplet impingement prediction and its implementations[C]//Proceeding of the 1st International Symposium on Aircraft Airworthiness. ISAA 2009 2-045, 2009.
  • 期刊类型引用(8)

    1. 李峰梅,蔡金良,曾稼,刘苗苗,亢慧. 开缝帽罩水滴撞击特性研究. 兵工自动化. 2023(03): 61-67 . 百度学术
    2. 李云单,周建军,林贵平,马奎元. 大涵道比发动机旋转帽罩积冰特性试验. 航空动力. 2023(04): 55-58 . 百度学术
    3. 蒋新伟,刘国朝,贾琦,李云单. 气膜防冰结构对发动机帽罩表面加热效果的影响. 热能动力工程. 2022(08): 57-64 . 百度学术
    4. 郭琦,申晓斌,林贵平,张世娟. 飞机旋转表面结冰数值模拟. 北京航空航天大学学报. 2022(11): 2259-2269 . 百度学术
    5. 申晓斌,郭琦,林贵平,穆作栋,王博. 三维旋转部件复杂表面结冰数值模拟. 飞机设计. 2020(05): 41-47+56 . 百度学术
    6. 姜禹,孙策,郭文峰,许智,李岩. 高尖速比下非对称翼型叶片结冰风洞试验. 工程热物理学报. 2019(11): 2545-2550 . 百度学术
    7. 李峰梅,柯鹏. 双孔射流对圆柱表面水滴撞击特性影响的数值分析. 空气动力学学报. 2019(06): 990-997 . 本站查看
    8. 王绍龙,李岩,田川公太朗,冯放. 旋转叶片结冰风洞试验研究. 工程热物理学报. 2017(06): 1229-1236 . 百度学术

    其他类型引用(6)

计量
  • 文章访问数:  221
  • HTML全文浏览量:  18
  • PDF下载量:  368
  • 被引次数: 14
出版历程
  • 收稿日期:  2015-12-20
  • 修回日期:  2015-12-24
  • 网络出版日期:  2021-01-07
  • 刊出日期:  2016-12-24

目录

    /

    返回文章
    返回