-
摘要:
针对传统的四旋翼控制方法在高机动飞行时控制效果不佳,难以跟踪机动性较强的轨迹且控制精度较低的问题,设计了基于增量非线性动态逆控制(INDI)方法和微分平坦前馈的轨迹跟踪控制器,不仅提高了高机动轨迹的跟踪精度,也增强了抗扰能力。由于角加速度无法直接获得,该方法对其非常敏感,设计了多种角加速度估计方法进行对比,通过飞行试验选择了效果最佳的互补滤波方法。试验结果证明:设计的基于互补滤波的前馈INDI方法可以控制飞行器快速、准确地跟踪高机动轨迹,且具有较强的抗扰能力。
-
关键词:
- 四旋翼 /
- 轨迹跟踪 /
- 增量非线性动态逆控制(INDI) /
- 抗扰控制 /
- 角加速度估计
Abstract:It is difficult for the traditional quadrotor control method with poor control effect in aggressive flight and low control accuracy to track trajectory with high speed and high acceleration. To solve this problem, a control method is proposed based on incremental nonlinear dynamic inversion(INDI) and differential flatness, as well as the complementary filter. The proposed control method not only improves the tracking accuracy of aggressive trajectories, but also enhances the anti-disturbance ability. Since the angular acceleration, which the proposed method is very sensitive to, cannot be directly obtained, a variety of angular acceleration estimation methods are designed for comparison, and the complementary filtering method with the best performance is selected through the flight test. The experimental results show that the proposed control method using INDI and differential flatness based on complementary filter can control the quadrotor to track aggressive trajectories quickly and accurately, and has strong anti-interference ability.
-
表 1 低速轨迹跟踪效果
Table 1. Low speed trajectory tracking performance
参数 前馈PID方法 前馈INDI方法 位置均方根误差/cm 8.091 4.232 偏航角均方根误差/(°) 2.735 0.433 最大速度/(m·s-1) 3.769 4.116 平均速度/(m·s-1) 1.944 2.086 最大加速度/(m·s-2) 8.855 9.192 平均加速度/(m·s-2) 3.864 4.122 表 2 中速轨迹跟踪效果
Table 2. Medium speed trajectory tracking performance
参数 前馈PID方法 前馈INDI方法 位置均方根误差/cm 17.24 6.021 偏航角均方根误差/(°) 2.042 1.972 最大速度/(m·s-1) 6.233 1 6.425 平均速度/(m·s-1) 2.414 8 2.601 最大加速度/(m·s-2) 16.097 5 13.839 平均加速度/(m·s-2) 5.299 5 4.919 表 3 高机动轨迹跟踪效果
Table 3. Aggressive trajectory tracking performance
参数 LPF KF CF 位置均方根误差/cm 15.072 14.084 10.310 偏航角均方根误差/(°) 4.751 4.298 1.552 平均速度/(m·s-1) 4.654 4.643 4.654 最大速度/(m·s-1) 10.815 10.922 10.416 平均加速度/(m·s-2) 7.604 7.555 7.434 最大加速度/(m·s-2) 18.510 17.239 17.119 表 4 轨迹跟踪效果
Table 4. Trajectory tracking performance
参数 前馈INDI方法(不带纸板) 前馈INDI方法(带纸板) 前馈PID方法(不带纸板) 前馈PID方法(带纸板) 位置均方根误差/cm 4.232 4.494 8.091 10.00 偏航角均方根误差/(°) 0.433 0.460 2.735 6.592 最大速度/(m·s-1) 4.116 4.034 3.769 3.283 平均速度/(m·s-1) 2.086 2.081 1.944 1.950 最大加速度/(m·s-2) 9.192 9.299 8.855 10.147 平均加速度/(m·s-2) 4.122 4.096 3.864 4.078 表 5 悬停抗扰效果
Table 5. Performance for hover with disturbance
参数 前馈INDI方法 前馈PID方法 位置均方根误差/cm 1.199 12.273 位置最大误差/cm 4.502 47.670 偏航角均方根误差/(°) 0.018 9 0.059 6 偏航角最大误差/(°) 0.081 9 0.269 -
[1] ROOT P. Fast lightweight autonomy (FLA) (Archived)[EB/OL]. (2020-04-08)[2022-04-01]. [2] 吕震华, 高亢. 美国无人集群城市作战应用发展综述[J]. 中国电子科学研究院学报, 2020, 15(8): 738-745.LV Z H, GAO K. Review of the development of drone swarm urban combat applications in the USA[J]. Journal of CAEIT, 2020, 15(8): 738-745(in Chinese). [3] BYRNES C I, ISIDORI A. Nonlinear control systems[J]. Lecture Notes in Control and Information Sciences, 2003, 242(65): 408. [4] SNELL S A, NNS D F, ARRARD W L. Nonlinear inversion flight control for a supermaneuverable aircraft[J]. Guidance, 2015, 15(4): 976-984. [5] LEE D, KIM H J, SASTRY S. Feedback linearization vs. adaptive sliding mode control for a quadrotor helicopter[J]. International Journal of Control Automation and Systems, 2009, 7(3): 419-428. [6] SIEBERLING S, CHU Q P, MULDER J A. Robust flight control using incremental nonlinear dynamic inversion and angular acceleration prediction[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(6): 1732-1742. [7] SIMPLÍCIO P, PAVEL M D, VAN KAMPEN E, et al. An acceleration measurements-based approach for helicopter nonlinear flight control using incremental nonlinear dynamic inversion[J]. Control Engineering Practice, 2013, 21(8): 1065-1077. [8] LU P, VAN KAMPEN E J, DE VISSER C, et al. Aircraft fault-tolerant trajectory control using incremental nonlinear dynamic inversion aircraft fault-tolerant trajectory control using incremental nonlinear dynamic inversion[J]. Control Engineering Practice, 2016, 57: 126-141. [9] SMEUR E J, CHU Q P, CROON G. Adaptive incremental nonlinear dynamic inversion for attitude control of micro aerial vehicles: AIAA 2016-1390[R]. Reston: AIAA, 2016. [10] SMEUR E J J, DE CROON G C H E, CHU Q. Cascaded incremental nonlinear dynamic inversion for MAV disturbance rejection[J]. Control Engineering Practice, 2018, 73: 79-90. [11] TAL E, KARAMAN S. Accurate tracking of aggressive quadrotor trajectories using incremental nonlinear dynamic inversion and differential flatness[J]. IEEE Transactions on Control Systems Technology, 2021, 29(3): 1203-1218. [12] ZHAO K, ZHANG J, MA D, et al. Composite disturbance rejection attitude control for quadrotor with unknown disturbance[J]. IEEE Transactions on Industrial Electronics, 2020, 67(8): 6894-6903. [13] WANG Z, ZHAO J, CAI Z, et al. Onboard actuator model-based incremental nonlinear dynamic inversion for quadrotor attitude control: Method and application[J]. Chinese Journal of Aeronautics, 2021, 34(11): 216-227. [14] JI C H, KIM C S, KIM B S. A hybrid incremental nonlinear dynamic inversion control for improving flying qualities of asymmetric store configuration aircraft[J]. Aerospace, 2021, 8(5): 23. [15] CHEN G, LIU A, HU J, et al. Attitude and altitude control of unmanned aerial-underwater vehicle based on incremental nonlinear dynamic inversion[J]. IEEE Access, 2020, 8: 156129-156138. [16] OVASKA S J, VALIVⅡTA S. Angular acceleration measurement: A review[J]. IEEE Transactions on Instrumentation and Measurement, 1998, 47(5): 1211-1217. [17] BUBNOV A V, EMASHOV V A, CHUDINOV A N, et al. Measurement methods for angular acceleration and errors for angular velocity of synchrophase electric drive[J]. Measurement Techniques, 2014, 57(8): 860-865. [18] CHENG S, FU M, WANG M, et al. Modeling for fluid transients in liquid-circular angular accelerometer[J]. IEEE Sensors Journal, 2017, 17(2): 267-273. [19] MOKHTARI E, ELHABIBY M, SIDERIS M G. Wavelet spectral techniques for error mitigation in the superconductive angular accelerometer output of a gravity gradiometer system[J]. IEEE Sensors Journal, 2017, 17(12): 3782-3793. [20] ALROWAIS H, GETZ P, KIM M G, et al. Bio-inspired fluidic thermal angular accelerometer[C]//IEEE International Conference on Micro Electro Mechanical Systems. Piscataway: IEEE Press, 2016: 15821613. [21] COSTELLO M, JITPRAPHAI T. Determining angular velocity and angular acceleration of projectiles using triaxial acceleration measurements[J]. Journal of Spacecraft and Rockets, 2002, 39(1): 73-80. [22] VALIVⅡTA S, OVASKA S J. Delayless acceleration measurement method for elevator control[J]. IEEE Transactions on Industrial Electronics, 1998, 45(2): 364-366. [23] CHOUKROUN D, BAR-ITZHACK I Y, OSHMAN Y. Novel quaternion Kalman filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 174-190. [24] VALENTI R G, DRYANOVSKI I, XIAO J. A linear Kalman filter for MARG orientation estimation using the algebraic quaternion algorithm[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(2): 467-481. [25] BELANGER P R, DOBROVOLNY P, HELMY A, et al. Estimation of angular velocity and acceleration from shaft encoder measurements[J]. International Journal of Robotics Research, 2002, 17(11): 1225-1233. [26] HAN J D, HE Y Q, XU W L. Angular acceleration estimation and feedback control: An experimental investigation[J]. Mechatronics, 2007, 17(9): 524-532. [27] MELLINGER D, KUMAR V. Minimum snap trajectory generation and control for quadrotors[C]//IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2011: 2520-2525. -