小型垂直轴风力机叶片结冰风洞试验与数值计算

李岩, 刘钦东, 王绍龙, 冯放, 田川公太朗

李岩, 刘钦东, 王绍龙, 冯放, 田川公太朗. 小型垂直轴风力机叶片结冰风洞试验与数值计算[J]. 空气动力学学报, 2016, 34(5): 568-572. DOI: 10.7638/kqdlxxb-2015.0214
引用本文: 李岩, 刘钦东, 王绍龙, 冯放, 田川公太朗. 小型垂直轴风力机叶片结冰风洞试验与数值计算[J]. 空气动力学学报, 2016, 34(5): 568-572. DOI: 10.7638/kqdlxxb-2015.0214
Li Yan, Liu Qindong, Wang Shaolong, Feng Fang, Tagawa Kotaro. Wind tunnel test and numerical simulation on blade icing of small-scaled vertical axis wind turbine[J]. ACTA AERODYNAMICA SINICA, 2016, 34(5): 568-572. DOI: 10.7638/kqdlxxb-2015.0214
Citation: Li Yan, Liu Qindong, Wang Shaolong, Feng Fang, Tagawa Kotaro. Wind tunnel test and numerical simulation on blade icing of small-scaled vertical axis wind turbine[J]. ACTA AERODYNAMICA SINICA, 2016, 34(5): 568-572. DOI: 10.7638/kqdlxxb-2015.0214

小型垂直轴风力机叶片结冰风洞试验与数值计算

基金项目: 国家自然科学基金(51576037)
详细信息
    作者简介:

    李岩(1972-),男,黑龙江宾县人,教授,研究方向:可再生能源综合利用.E-mail:liyanneau@163.com

  • 中图分类号: V211.753

Wind tunnel test and numerical simulation on blade icing of small-scaled vertical axis wind turbine

  • 摘要: 利用风洞试验和数值模拟相结合的手段,研究了小型垂直轴风力机叶片在旋转状态下的结冰特性以及结冰后翼型与风力机的气动特性变化,以期为建立较复杂的大型水平轴风力机叶片旋转试验系统和研究其结冰机理、防除冰技术提供参考。试验在东北农业大学自行设计的利用自然低温的结冰风洞中进行,获得了采用NACA0018翼型的小型2叶片垂直轴风力机风轮在5种尖速比下的结冰分布:风力机叶片结冰遍布叶片整个表面,随着尖速比的增大,结冰形状出现不对称性。同时,数值模拟结果表明:叶片结冰后,随着尖速比的增加和结冰量的增多,升力系数降低阻力系数增大的趋势明显,风力机的功率系数也随之下降。分析发现,叶片结冰导致不同旋转角下叶片翼型周围的压力场和速度场发生了不同程度的变化,从而气动特性发生变化,影响了风力机性能。
    Abstract: The icing characteristics of rotating blade of a small-scaled Vertical Axis Wind Turbine (VAWT) and the aerodynamics performance changes of the iced blade airfoil and rotor were researched by wind tunnel tests and numerical simulation in order to provide technology reference for establishing the more complex test system for large scale Horizontal Axis Wind Turbine with rotating blade and study the icing mechanism and anti-icing and de-icing technology. The experiments were performed in an icing wind tunnel designed by Northeast Agricultural University using natural low temperature in cold winter. The test model was a small-scaled VAWT with 2 blades with NACA0018 airfoil. The icing accretions on rotating blade surface under 5 tip speed ratios were tested and recorded. Wind turbine blades were frozen over the entire surface of the blade. Ice shape asymmetry can be found on the blade with the increasing of tip speed ratio. Furthermore, the lift coefficient of iced blade decreased and drag coefficient increased with the increasing of tip speed ratio and the amount of ice based on the results of numerical simulation. The power coefficients of the rotor were also decreased. It can be also found that the change degree of pressure field and velocity field around the iced blade depended on rotating angles, which was the main reason affecting the aerodynamic performance of blade and the turbine.
  • [1] Kimura S, Sato T, Tsuboi K, et al. Numerical simulation of ice accretion on a wind turbine blade[J]. Journal of the Japanese Society of Snow & Ice, 2006, 68(5):393-407.
    [2] Mróz A, Holnicki-Szulc J, Kärnä T. Mitigation of ice loading on off-shore wind turbines:feasibility study of a semi-active solution[J]. Computers & Structures, 2008, 86(s 3-5):217-226.
    [3] Virk M S, Homola M C, Nicklasson P J. Relation between angle of attack and atmospheric ice accretion on large wind turbine's blade[J]. Wind Engineering, 2010, (6):607-614.
    [4] Kraj A G, Bibeau E L. Impact of mitigation strategies on icing accumulation rate for wind turbines in cold climates[R]. Wind Energy-Technological Advances, 2007.
    [5] Kraj A G, Bibeau E L. Measurement method and results of ice adhesion force on the curved surface of a wind turbine blade[J]. Renewable Energy, 2010, 35(4):741-746.
    [6] Homola M C, Virk M S, Nicklasson P J, et al.Performance lossesdue to ice accretion for a 5MW wind turbine[J]. Renewable Energy, 2012, 15, 379-389.
    [7] Bose Neil. Icing on a small horizontal axis wind turbine-Part 1:Glaze ice profiles[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 45(1):75-85.
    [8] Kraj A G, Bibeau E L. Phases of icing on wind turbine blades characterized by ice accumulation[J]. Renewable Energy, 2010, 35(5):966-972.
    [9] Han Yiqiang, Jose Palacios, Sven Schmitz. Scaled ice accretion experiments on a rotating wind turbine blade[J]. Wind Engineering and Industrial Aerodynamics, 2012, 109(11):55-67.
    [10] Yi Xian, Zhu Guoling. Computation of glaze ice accretion on airfoil[J]. Acta Aerodynamica Sinica, 2004, 22(4):490-493. (in Chinese)易贤, 朱国林. 考虑传质传热效应的翼型积冰计算[J]. 空气动力学学报, 2004, 22(4):490-493.
    [11] Zhu Chengxiang, Wang Long, Fu Bin. Numerical study of wind turbine blade airfoil ice accretion[J]. Acta Aerodynamica Sinica, 2011, 29(4):522-528. (in Chinese)朱程香, 王珑, 付斌. 风力机叶片翼型的结冰数值模拟研究[J]. 空气动力学学报, 2011, 29(4):522-528.
    [12] Deng Xiaohu, Lu Xuxiang, Li Luping. Numerical simulation of airfoil ice accretion process on horizontal-axis wind turbine blade[J]. Energy Technology, 2010, 31(5):266-271. (in Chinese)邓晓湖, 卢绪祥, 李录平. 水平轴风力机叶片翼型结冰的数值模拟[J]. 能源技术, 2010, 31(5):266-271.
    [13] Li Y, Wang S L, Zheng Y F, et al. Design of wind tunnel experiment system for wind turbine icing by using natural low temperature[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(2):54-58, 66. (in Chinese)李岩, 王绍龙, 郑玉芳, 等. 利用自然低温的风力机结冰风洞实验系统设计[J]. 实验流体力学, 2016, 30(2):54-58, 66.
    [14] Li Yan, Chi Yuan, Feng Fang. Wind tunnel test on icing on blade used for vertical axis wind turbine[J]. Journal of Engineering Thermophysics, 2012, 33(11):1872-1875. (in Chinese)李岩, 迟媛, 冯放. 垂直轴风力机叶片表面结冰的风洞试验[J]. 工程热物理学报, 2012, 33(11):1872-1875.
    [15] Yan Li, Kotaro Tagawa, Fang Feng, et al. A wind tunnel experimental study of icing on wind turbine blade airfoil[J]. Energy Conversion and Management, 2014, 85(9):591-595.
  • 期刊类型引用(12)

    1. 郭文峰,张影微,董笑宇,沈贺,李岩. 基于超声微振动的风力机叶片除冰研究. 工程热物理学报. 2023(07): 1808-1814 . 百度学术
    2. 刘红祥,闯振菊,刘社文,常欣,侯立勋,李春郑. 风机叶片结冰机理和电热除冰分析. 船舶工程. 2023(12): 171-177+189 . 百度学术
    3. 蒙建国,王凯,任其科,赵祥,耿滔,姜合群. 基于CiteSpace分析近十年来我国风力机叶片研究热点. 内蒙古科技大学学报. 2022(02): 113-121 . 百度学术
    4. 孔祥逸,张宝峰,王刚,于东玮,韩雪阳,张大勇. 海上风力机叶片覆冰对其气动性能的影响. 船舶工程. 2022(S1): 166-171 . 百度学术
    5. 王晓东,于佳鑫,房代宝,董世充. 随机风况下风力机翼型结冰对气动特性的影响研究. 风机技术. 2020(02): 59-66 . 百度学术
    6. 程杰,来永斌,王龙,武浩,李亮. 典型风力机翼型结冰特性分析. 河北科技大学学报. 2019(01): 9-14 . 百度学术
    7. 姜禹,孙策,郭文峰,许智,李岩. 高尖速比下非对称翼型叶片结冰风洞试验. 工程热物理学报. 2019(11): 2545-2550 . 百度学术
    8. 权龙哲,郦亚军,王旗,冯槐区,魏春雨. 考虑风扰的对靶喷雾机械臂药液喷洒动力学建模与试验. 农业机械学报. 2018(06): 48-59 . 百度学术
    9. 胡良权,陈进格,沈昕,竺晓程,杜朝辉. 结冰对风力机载荷的影响. 上海交通大学学报. 2018(08): 904-909 . 百度学术
    10. 王绍龙,李岩,田川公太朗,冯放. 旋转叶片结冰风洞试验研究. 工程热物理学报. 2017(06): 1229-1236 . 百度学术
    11. 李岩,王绍龙,冯放,郭文峰,田川公太朗. 绕轴旋转翼型结冰分布的结冰风洞试验研究. 哈尔滨工程大学学报. 2017(04): 545-553 . 百度学术
    12. 李岩,郑玉芳,赵守阳,冯放,李建业,王农祥,白荣彬. 直线翼垂直轴风力机气动特性研究综述. 空气动力学学报. 2017(03): 368-382+398 . 本站查看

    其他类型引用(24)

计量
  • 文章访问数:  271
  • HTML全文浏览量:  21
  • PDF下载量:  392
  • 被引次数: 36
出版历程
  • 收稿日期:  2015-12-17
  • 修回日期:  2016-01-13
  • 网络出版日期:  2021-01-07
  • 刊出日期:  2016-10-24

目录

    /

    返回文章
    返回