首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Time suboptimal formation flying manoeuvres through improved magnetic charged system search
Authors:Andrea D’Ambrosio  Dario Spiller  Fabio Curti
Institution:School of Aerospace Engineering, Sapienza University of Rome, Via Salaria 851, 00138 Rome, Italy
Abstract:The development of fast and reliable optimization algorithms is required in order to obtain real-time optimal trajectory on-board spacecraft. In addition, the wide spread of small satellites, due to their low costs, is leading to a greater number of satellite formations in space. This paper presents an Improved version of the Magnetic Charged System Search (IMCSS) metaheuristic algorithm to compute time-suboptimal manoeuvres for satellite formation flying. The proposed algorithm exploits some strategies aimed at improving the convergence to the optimum, such as the chaotic local search and the boundary handling technique, and it is able to self-tune its internal parameters and coefficients. Moreover, the inverse dynamics technique and the differential flatness approach, through the B-splines curves, are used to approximate the trajectory. The optimization procedure is applied to the circular J2 relative model developed by Schweighart and Sedwick and to the elliptical relative motion model developed by Yamanaka and Ankersen. The results of this paper show that the convergence is better achieved by using the proposed tools, thus proving the efficiency and reliability of the algorithm in solving some space engineering problems.
Keywords:Formation flying manoeuvres  Optimization  Metaheuristic algorithms  Inverse dynamics
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号