首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Designing space vehicle shields for meteoroid protection: A new analysis
Authors:HF Swift  R Bamford  R Chen
Institution:1. Physics Applications, Inc., Dayton, Ohio, USA;7. Applied Mechanics Technology Section, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Abstract:Dual-layer meteroid shields consisting of sacrificial bumper plates spaced some distance outboard from the vehicle hull are the most effective structures yet conceived for protecting space vehicles from supervelocity meteroid impacts. This paper presents a new analysis for designing dual-layer shields. The analysis is based upon energy and momentum conservation, fundamental electromagnetic radiation physics, and observation of results from extensive experimental impact investigations conducted at relatively low velocities (near 7 km/s). One important conclusion is that most of the kinetic energy of a meteoroid striking a dual-layer shield is expended as radiation at the stagnation zone on the face plate of the underlying structure. The analysis includes systematic procedures to evaluate the response of shield designs for a given impact threat. Similar applications of the analysis can be used to support a mathematically rigorous procedure for optimum shield design. The research described here supported the Halley Intercept Mission Project at the Jet Propulsion Laboratory, C.I.T., under Contract No. NAS 7–100, sponsored by the National Aeronautics and Space Administration.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号