首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Atmospheric drag modelling for orbital micro-debris at LEO altitudes
Authors:JAM McDonnell  PR Ratcliff  I Collier
Institution:

a Unit for Space Sciences, Physics Laboratory, University of Kent at Canterbury Canterbury, Kent CT2 7NR U.K.

Abstract:Data from satellite impact experiments and the scanning of recovered spacecraft offers an extended timebase to examine, using a consistent methodology, the microparticle fluxes. New penetration data from the TiCCE experiment on Eureca /1, 2/ adds to this database and shows that - despite an expected growth in the micro-debris flux - the observed flux is not greater than either LDEF or SMM. The question arises: “is this consistent with the micro particle flux being dominated by space debris or by meteoroids”.

To assist this assessment, numerical modelling using the Gear method /3/ of explicit time integration of the atmospheric drag lifetime of micron dimensioned orbital debris in both circular (LEO) and eccentric (GTO) orbits has been performed for the relevant space exposures. Results are applied to the data to examine whether the recent variations in flux can be attributed to varying levels of, orbital micro-debris caused by atmospheric drag and its changes during the solar cycle.

Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号